Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 398: 130520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432541

RESUMO

Biofilm-based cultivation systems are emerging as a promising technology for microalgae production. However, efficient and non-invasive monitoring routines are still lacking. Here, a protocol to monitor microalgae biofilms based on reflectance indices (RIs) is proposed. This framework was developed using a rotating biofilm system for astaxanthin production by cultivating Haematococcus pluvialis on cotton carriers. Biofilm traits such as biomass, astaxanthin, and chlorophyll were characterized under different light and nutrient regimes. Reflectance spectra were collected to identify the spectral bands and the RIs that correlated the most with those biofilm traits. Robust linear models built on more than 170 spectra were selected and validated on an independent dataset. Astaxanthin content could be precisely predicted over a dynamic range from 0 to 4% of dry weight, regardless of the cultivation conditions. This study demonstrates the strength of reflectance spectroscopy as a non-invasive tool to improve the operational efficiency of microalgae biofilm-based technology.


Assuntos
Clorofíceas , Microalgas , Xantofilas , Biomassa , Biofilmes
2.
Biotechnol Bioeng ; 121(3): 991-1004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098364

RESUMO

Microalgae biofilm emerged as a solid alternative to conventional suspended cultures which present high operative costs and complex harvesting processes. Among several designs, rotating biofilm-based systems stand out for their scalability, although their primary applications have been in wastewater treatment and aquaculture. In this work, a rotating system was utilized to produce a high-value compound (astaxanthin) using Haematococcus pluvialis biofilms. The effect of nitrogen regime, light intensity, and light history on biofilm traits was assessed to better understand how to efficiently operate the system. Our results show that H. pluvialis biofilms follow the classical growth stages described for bacterial biofilms (from adhesion to maturation) and that a two-stage (green and red stages) allowed to reach astaxanthin productivities of 204 mg m-2 d-1 . The higher light intensity applied during the red stage (400 and 800 µmol m-2 s-1 ) combined with nitrogen depletion stimulated similar astaxanthin productivities. However, by training the biofilms during the green stage, using mild-light intensity (200 µmol m-2 s-1 ), a process known as priming, the final astaxanthin productivity was enhanced by 40% with respect to biofilms pre-exposed to 50 µmol m-2 s-1 . Overall, this study shows the possibility of utilizing rotating microalgae biofilms to produce high-value compounds laying the foundation for further biotechnological applications of these emerging systems.


Assuntos
Clorofíceas , Clorófitas , Microalgas , Luz , Nitrogênio , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...