Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1231659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588057

RESUMO

Introduction: In Krabbe disease (KD), mutations in ß-galactosylceramidase (GALC), a lysosomal enzyme responsible for the catabolism of galactolipids, leads to the accumulation of its substrates galactocerebroside and psychosine. This neurologic condition is characterized by a severe and progressive demyelination together with neuron-autonomous defects and degeneration. Twitcher mice mimic the infantile form of KD, which is the most common form of the human disease. The Twitcher CNS and PNS present demyelination, axonal loss and neuronal defects including decreased levels of acetylated tubulin, decreased microtubule stability and impaired axonal transport. Methods: We tested whether inhibiting the α-tubulin deacetylase HDAC6 with a specific inhibitor, ACY-738, was able to counteract the early neuropathology and neuronal defects of Twitcher mice. Results: Our data show that delivery of ACY-738 corrects the low levels of acetylated tubulin in the Twitcher nervous system. Furthermore, it reverts the loss myelinated axons in the sciatic nerve and in the optic nerve when administered from birth to postnatal day 9, suggesting that the drug holds neuroprotective properties. The extended delivery of ACY-738 to Twitcher mice delayed axonal degeneration in the CNS and ameliorated the general presentation of the disease. ACY-738 was effective in rescuing neuronal defects of Twitcher neurons, stabilizing microtubule dynamics and increasing the axonal transport of mitochondria. Discussion: Overall, our results support that ACY-738 has a neuroprotective effect in KD and should be considered as an add-on therapy combined with strategies targeting metabolic correction.

2.
Animals (Basel) ; 10(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824021

RESUMO

Embryo transfer (ET) is a common procedure in rodent facilities. Optimizing this technique may help to reduce the number of animals, but little information is available regarding wild type strains and the conditions that affect embryo transfer. To explore this theme, 2-cell C57BL/6J embryos were transferred after overnight culture of freshly collected zygotes using different conditions: unilateral transfers using a total of 6, 8, 12, 15, 20 and 25 embryos were performed initially; then, this strain was also used for bilateral transfers using a total of 6, 12 and 20 embryos equally divided by the two oviducts. Groups of 25 embryos were not tested for the bilateral technique, since this condition produced the lower success rate when using the unilateral technique and 20 embryos would still represent a large number of embryos. A group of 2-cell B6129F1 embryos was also transferred using unilateral and bilateral ET with 6, 12 and 20 embryos. Crl:CD1(ICR) were used as recipient females for non-reciprocal transfers and C57BL/6J were used to test reciprocal transfers (only tested for six C57BL/6J unilateral transfers). Unilateral transfers using C57BL/6J mice produced higher success rates using six embryos, compared to the other groups transferred unilaterally (p-values between 0.0001 and 0.0267), but the mean number of pups per litter was not different among groups. Bilateral transfer produced higher number of pups when 20 embryos were divided by the two oviducts compared to six (p = 0.0012) or 12 (p = 0.0148) embryos, but with no differences in success rates. No statistical differences were found between the groups of B6129F1, but better results were obtained on bilateral transfers using a total of six embryos. For the strain tested (C57BL/6J), the uterine environment (Crl:CD1(ICR) or C57BL/6J recipient) does not impact the outcome of the technique. These results complement previous work published using genetically engineered mice strains and show that unilateral transfers using low number of embryos (6), produce better outcomes when compared to bilateral or unilateral transfers using more embryos. It also highlights differences between the outcome of bilateral transfers in the two strains tested. A set of historical data of genetically engineered mice at a C57BL/6J background was also included, confirming that lower embryo numbers are related to higher success rates. Together, the outcome of these experiments can be important to reduce the number of recipient and donor females, optimize embryo transfers and improve animal welfare discouraging the use of a more invasive technique.

3.
Mol Neurobiol ; 53(2): 1052-1064, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579385

RESUMO

Lack of axon regeneration following spinal cord injury has been mainly ascribed to the inhibitory environment of the injury site, i.e., to chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs). Here, we used shiverer (shi) mice to assess axon regeneration following spinal cord injury in the presence of MAIs and CSPG but in the absence of compact myelin. Although in vitro shi neurons displayed a similar intrinsic neurite outgrowth to wild-type neurons, in vivo, shi fibers had increased regenerative capacity, suggesting that the wild-type spinal cord contains additional inhibitors besides MAIs and CSPG. Our data show that besides myelin protein, myelin lipids are highly inhibitory for neurite outgrowth and suggest that this inhibitory effect is released in the shi spinal cord given its decreased lipid content. Specifically, we identified cholesterol and sphingomyelin as novel myelin-associated inhibitors that operate through a Rho-dependent mechanism and have inhibitory activity in multiple neuron types. We further demonstrated the inhibitory action of myelin lipids in vivo, by showing that delivery of 2-hydroxypropyl-ß-cyclodextrin, a drug that reduces the levels of lipids specifically in the injury site, leads to increased axon regeneration of wild-type (WT) dorsal column axons following spinal cord injury. In summary, our work shows that myelin lipids are important modulators of axon regeneration that should be considered together with protein MAIs as critical targets in strategies aiming at improving axonal growth following injury.


Assuntos
Axônios/patologia , Lipídeos/química , Bainha de Mielina/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/patologia , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Colesterol/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Esfingomielinas/metabolismo , Medula Espinal/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
4.
J Neurosci ; 35(5): 2146-60, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653370

RESUMO

Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Traumatismos da Medula Espinal/metabolismo , Bexiga Urinaria Neurogênica/metabolismo , Animais , Axônios/metabolismo , Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Feminino , Regeneração Nervosa , Ratos , Ratos Wistar , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinaria Neurogênica/etiologia , Bexiga Urinaria Neurogênica/fisiopatologia
5.
BMC Biol ; 12: 47, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24923837

RESUMO

BACKGROUND: In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity. RESULTS: Following a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3ß (GSK3ß) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3ß regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3ß activity in neurons. Following spinal cord injury, reduced GSK3ß levels or complete neuronal deletion of GSK3ß led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3ß substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3ß-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3ß-CRMP-2 relevance during axon regeneration. CONCLUSIONS: Our work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3ß-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.


Assuntos
Axônios/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Cones de Crescimento/metabolismo , Microtúbulos/metabolismo , Regeneração , Animais , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Ratos , Ratos Wistar
6.
J Neurosci ; 34(17): 5965-70, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760855

RESUMO

Despite the inability of CNS axons to regenerate, an increased regenerative capacity can be elicited following conditioning lesion to the peripheral branch of dorsal root ganglia neurons (DRGs). By in vivo radiolabeling of rat DRGs, coupled to mass spectrometry and kinesin immunoprecipitation of spinal cord extracts, we determined that the anterograde transport of cytoskeleton components, metabolic enzymes and axonal regeneration enhancers, was increased in the central branch of DRGs following a peripheral conditioning lesion. Axonal transport of mitochondria was also increased in the central branch of Thy1-MitoCFP mice following a peripheral injury. This effect was generalized and included augmented transport of lysosomes and synaptophysin- and APP-carrying vesicles. Changes in axonal transport were only elicited by a peripheral lesion and not by spinal cord injury. In mice, elevated levels of motors and of polyglutamylated and tyrosinated tubulin were present following a peripheral lesion and can explain the increase in axonal transport induced by conditioning. In summary, our work shows that a peripheral injury induces a global increase in axonal transport that is not restricted to the peripheral branch, and that, by extending to the central branch, allows a rapid and sustained support of regenerating central axons.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Animais , AMP Cíclico/metabolismo , Gânglios Espinais/fisiologia , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , Ratos , Ratos Wistar , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...