Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 37(12): 2630-2641, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29994200

RESUMO

The existence of diverse image datasets accompanied by reference annotations is a crucial prerequisite for an objective benchmarking of bioimage analysis methods. Nevertheless, such a prerequisite is hard to satisfy for time lapse, multidimensional fluorescence microscopy image data, manual annotations of which are laborious and often impracticable. In this paper, we present a simulation system capable of generating 3-D time-lapse sequences of single motile cells with filopodial protrusions of user-controlled structural and temporal attributes, such as the number, thickness, length, level of branching, and lifetime of filopodia, accompanied by inherently generated reference annotations. The proposed simulation system involves three globally synchronized modules, each being responsible for a separate task: the evolution of filopodia on a molecular level, linear elastic deformation of the entire cell with filopodia, and the synthesis of realistic, time-coherent cell texture. Its flexibility is demonstrated by generating multiple synthetic 3-D time-lapse sequences of single lung cancer cells of two different phenotypes, qualitatively and quantitatively resembling their real counterparts acquired using a confocal fluorescence microscope.


Assuntos
Imageamento Tridimensional/métodos , Pseudópodes/fisiologia , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Células A549 , Humanos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...