Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 240(6): 1048-1074, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35037260

RESUMO

Tree sloths rely on their limb flexors for bodyweight support and joint stability during suspensory locomotion and posture. This study aims to describe the myology of three-toed sloths and identify limb muscle traits that indicate modification for suspensorial habit. The pelvic limbs of the brown-throated three-toed sloth (Bradypus variegatus) were dissected, muscle belly mass was recorded, and the structural arrangements of the muscles were documented and compared with the available myological accounts for sloths. Overall, the limb musculature is simplified by containing muscles with generally long and parallel fascicles. A number of specific and informative muscle traits are additionally observed in the pelvic limb of B. variegatus: well-developed hip flexors and hip extensors each displaying several fused bellies; massive knee flexors; two heads of the m. adductor longus and m. gracilis; robust digital flexors and flexor tendons; m. tibialis cranialis muscle complex originating from the tibia and fibula and containing a modified m. extensor digitorum I longus; appreciable muscle mass devoted to ankle flexion and hindfoot supination; only m. extensor digitorum brevis acts to extend the digits. Collectively, the findings for tree sloths emphasize muscle mass and organization for suspensory support namely by the hip flexors, knee flexors, and limb adductors, for which the latter two groups may stabilize suspensory postures by exerting appreciable medially-directed force on the substrate. Specializations in the distal limb are also apparent for sustained purchase of the substrate by forceful digital flexion coupled with strong ankle flexion and supination of the hind feet, which is permitted by the reorganization of several digital extensors. Moreover, the reduction or loss of other digital flexor and ab-adductor muscles marks a dramatic simplification of the intrinsic foot musculature in B. variegatus, the extent to which varies across extant species of two- and three-toed tree sloths and likely is related to substrate preference/use.


Assuntos
Bichos-Preguiça , Animais , Membro Posterior/fisiologia , Locomoção/fisiologia , Músculo Esquelético , Postura , Bichos-Preguiça/fisiologia
2.
J Exp Biol ; 223(Pt 14)2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32527958

RESUMO

Sloths exhibit below branch locomotion whereby their limbs are loaded in tension to support the body weight. Suspensory behaviors require both strength and fatigue resistance from the limb flexors; however, skeletal muscle mass of sloths is reduced compared with other arboreal mammals. Although suspensory locomotion demands that muscles are active to counteract the pull of gravity, it is possible that sloths minimize muscle activation and/or selectively recruit slow motor units to maintain support, thus indicating neuromuscular specializations to conserve energy. Electromyography (EMG) was evaluated in a sample of three-toed sloths (Bradypus variegatus; N=6) to test this hypothesis. EMG was recorded at 2000 Hz via fine-wire electrodes implanted into two suites of four muscles in the left forelimb while sloths performed suspensory hanging (SH), suspensory walking (SW) and vertical climbing (VC). All muscles were minimally active for SH. During SW and VC, sloths moved slowly (duty factor: 0.83) and activation patterns were consistent between behaviors; the flexors were activated early and for a large percentage of limb contact, whereas the extensors were activated for shorter burst durations on average and showed biphasic (contact and swing) activity. Muscle activities were maximal for the elbow flexors and lowest for the carpal/digital flexors, and overall activity was significantly greater for SW and VC compared with SH. Wavelet analysis indicated high mean EMG frequencies from the myoelectric intensity spectra coupled with low burst intensities for SH, although the opposite pattern occurred for SW and VC, with the shoulder flexors and elbow flexor, m. brachioradialis, having extremely low mean EMG frequencies that are consistent with recruitment of slow fibers. Collectively, these findings support the hypothesis and suggest that sloths may selectively recruit smaller, fast motor units for suspensory postures but have the ability to offset the cost of force production by recruitment of large, slow motor units during locomotion.


Assuntos
Eletromiografia , Locomoção , Bichos-Preguiça , Animais , Membro Anterior , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...