Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14471-14489, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859391

RESUMO

We propose a method to analyze the characteristics of scintillator screens for neutron imaging applications. Using calculations based on the theory of cascaded linear steps as well as experimental measurements, we compared the characteristics of different lithium- and gadolinium-based scintillator screens. Our results show that, despite their much lower light output, gadolinium-based scintillators outperform lithium-based scintillators in terms of noise characteristics for a variety of imaging setups. However, the relative performance of scintillator screens is highly dependent on the other setup characteristics such as the beam spectrum, field of view, used optical lens and size of the camera sensor. Consequently, the selection of the best scintillator screen - as well as the scintillator characteristics assessment in new developments - requires a systematic consideration of all these elements, as enabled by the framework presented here.

2.
Sci Rep ; 11(1): 14919, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290334

RESUMO

Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40[Formula: see text] or 80[Formula: see text] respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54[Formula: see text] and 104[Formula: see text] respectively, compared to the conventional LSP treatment.

3.
Materials (Basel) ; 13(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32209974

RESUMO

The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additionally, the spatial distribution of the TRIP effect triggered by stress concentrations is visualized using neutron Bragg edge imaging including, e.g., weak positions of the cruciform geometry. The results demonstrate that neutron diffraction contrast imaging offers the possibility to capture the TRIP effect in objects with complex geometries under complex stress states.

4.
Nat Commun ; 10(1): 3788, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439848

RESUMO

The intrinsic magnetic moment of a neutron, combined with its charge neutrality, is a unique property which allows the investigation of magnetic phenomena in matter. Here we present how the utilization of a cold polarized neutron beam in neutron grating interferometry enables the visualization and characterization of magnetic properties on a microscopic scale in macroscopic samples. The measured signal originates from the phase shift induced by the magnetic potential. Our method enables the detection of previously inaccessible magnetic field gradients, in the order of T cm-1, extending the probed range by an order of magnitude. We visualize and quantify the phase shift induced by a well-defined square shaped uniaxial magnetic field and validate our experimental findings with theoretical calculations based on Hall probe measurements of the magnetic field distribution. This allows us to further extend our studies to investigations of inhomogeneous and anisotropic magnetic field distribution.

5.
PLoS One ; 14(1): e0210300, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30608985

RESUMO

We describe in this paper the experimental procedure, the data treatment and the quantification of the black body correction: an experimental approach to compensate for scattering and systematic biases in quantitative neutron imaging based on experimental data. The correction algorithm is based on two steps; estimation of the scattering component and correction using an enhanced normalization formula. The method incorporates correction terms into the image normalization procedure, which usually only includes open beam and dark current images (open beam correction). Our aim is to show its efficiency and reproducibility: we detail the data treatment procedures and quantitatively investigate the effect of the correction. Its implementation is included within the open source CT reconstruction software MuhRec. The performance of the proposed algorithm is demonstrated using simulated and experimental CT datasets acquired at the ICON and NEUTRA beamlines at the Paul Scherrer Institut.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Difração de Nêutrons/métodos , Nêutrons , Algoritmos , Viés , Simulação por Computador , Cobre/química , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Chumbo/química , Difração de Nêutrons/estatística & dados numéricos , Imagens de Fantasmas , Software , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Água/química
6.
MethodsX ; 3: 535-541, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774412

RESUMO

The recent developments in scientific complementary metal oxide semiconductor (sCMOS) detector technology allow for imaging of relevant processes with very high temporal resolution with practically negligible readout time. However, it is neutron intensity that limits the high temporal resolution neutron imaging. In order to partially overcome the neutron intensity problem for the high temporal resolution imaging, a parabolic neutron focussing guide was utilized in the test arrangement and placed upstream the detector in such a manner that the focal point of the guide was positioned slightly behind the scintillator screen. In such a test arrangement, the neutron flux can be increased locally by about one order of magnitude, albeit with the reduced spatial resolution due to the increased divergence of the neutron beam. In a pilot test application, an in-situ titration system allowing for a remote delivery of well-defined volumes of liquids onto the sample stage was utilized. The process of droplets of water (H2O) falling into the container filled with heavy water (D2O) and the subsequent process of the interaction and mixing of the two liquids were imaged with temporal resolution of 0.01 s. •Combination of neutron focussing device and use of sCMOS detector allows for very high temporal resolution neutron imaging to be achieved (albeit with reduced spatial resolution and field of view).•In-situ neutron imaging titration device for liquid interaction experiments.•Interaction of otherwise indiscernible liquids (H2O and D2O) visualized using neutron radiography with 0.01 s temporal resolution.

7.
Rev Sci Instrum ; 86(12): 125109, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724075

RESUMO

High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...