Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Pept ; 142(3): 69-77, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17363078

RESUMO

Brain catecholamines are involved in several biological functions regulated by the hypothalamus. We have previously reported that endothelin-1 and -3 (ET-1 and ET-3) modulate norepinephrine release in the anterior and posterior hypothalamus. As tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, the aim of the present work was to investigate the effects of ET-1 and ET-3 on TH activity, total enzyme level and the phosphorylated forms of TH in the rat posterior hypothalamus. Results showed that ET-1 and ET-3 diminished TH activity but the response was abolished by both selective ET(A) and ET(B) antagonists (BQ-610 and BQ-788, respectively). In addition ET(A) and ET(B) selective agonists (sarafotoxin S6b and IRL-1620, respectively) failed to affect TH activity. In order to investigate the intracellular signaling coupled to endothelins (ETs) response, nitric oxide (NO), phosphoinositide, cAMP/PKA and CaMK-II pathways were studied. Results showed that N(omega)-nitro-l-arginine methyl ester and 7-nitroindazole (NO synthase and neuronal NO synthase inhibitors, respectively), 1H-[1,2,4]-oxadiazolo[4,3-alpha]quinozalin-1-one and KT-5823 (soluble guanylyl cyclase, and PKG inhibitors, respectively) inhibited ETs effect on TH activity. Further, sodium nitroprusside and 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and cGMP analog, respectively) mimicked ETs response. ETs-induced reduction of TH activity was not affected by a PKA inhibitor but it was abolished by PLC, PKC and CaMK-II inhibitors as well as by an IP(3) receptor antagonist. On the other hand, both ETs did not modify TH total level but reduced the phosphorylation of serine residues of the enzyme at positions 19, 31 and 40. Present results suggest that ET-1 and ET-3 diminished TH activity through an atypical ET or ET(C) receptor coupled to the NO/cGMP/PKG, phosphoinositide and CaMK-II pathways. Furthermore, TH diminished activity may result from the reduction of the phosphorylated sites of the enzyme without changes in its total level. Taken jointly present and previous results support that ET-1 and ET-3 may play a relevant role in the modulation of catecholaminergic neurotransmission in the posterior hypothalamus of the rat.


Assuntos
Endotelina-1/farmacologia , Endotelina-3/farmacologia , Hipotálamo Posterior/efeitos dos fármacos , Hipotálamo Posterior/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Hipotálamo Posterior/metabolismo , Técnicas In Vitro , Masculino , Óxido Nítrico/metabolismo , Oligopeptídeos/farmacologia , Fosfatidilinositóis/metabolismo , Fosforilação , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/química
2.
Biochem Biophys Res Commun ; 334(3): 796-802, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16023617

RESUMO

The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.


Assuntos
Endotelina-1/fisiologia , Endotelina-3/fisiologia , Hipotálamo Anterior/fisiologia , Óxido Nítrico/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Carbazóis/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Hipotálamo Anterior/efeitos dos fármacos , Indazóis/farmacologia , Indóis/farmacologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Nitroprussiato/farmacologia , Oligopeptídeos/farmacologia , Oxidiazóis/farmacologia , Piperidinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Suramina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...