Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-17909287

RESUMO

Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C-N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding the catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2'-anhydrouridine. X-ray diffraction data were collected to 2.15 A. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 A. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.


Assuntos
Salmonella typhimurium/enzimologia , Uridina Fosforilase/química , Uridina/análogos & derivados , Cristalização , Cristalografia por Raios X , Especificidade por Substrato , Uridina/química , Uridina Fosforilase/isolamento & purificação
2.
Artigo em Inglês | MEDLINE | ID: mdl-17012782

RESUMO

Laccases are members of the blue multi-copper oxidase family that oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. Crystals of the laccase from Cerrena maxima have been obtained and X-ray data were collected to 1.9 A resolution using synchrotron radiation. A preliminary analysis shows that the enzyme has the typical laccase structure and several carbohydrate sites have been identified. The carbohydrate chains appear to be involved in stabilization of the intermolecular contacts in the crystal structure, thus promoting the formation of well ordered crystals of the enzyme. Here, the results of an X-ray crystallographic study on the laccase from the fungus Cerrena maxima are reported. Crystals that diffract well to a resolution of at least 1.9 A (R factor = 18.953%; R(free) = 23.835; r.m.s.d. bond lengths, 0.06 A; r.m.s.d. bond angles, 1.07 degrees) have been obtained despite the presence of glycan moieties. The overall spatial organization of C. maxima laccase and the structure of its copper-containing active centre have been determined by the molecular-replacement method using the laccase from Trametes versicolor (Piontek et al., 2002) as a structural template. In addition, four glycan-binding sites were identified and the 1.9 A X-ray data were used to determine the previously unknown primary structure of this protein. The identity (calculated from sequence alignment) between the C. maxima laccase and the T. versicolor laccase is about 87%. Tyr196 and Tyr372 show significant extra density at the ortho positions and this has been interpreted in terms of NO(2) substituents.


Assuntos
Basidiomycota/enzimologia , Lacase/química , Basidiomycota/química , Cristalização , Cristalografia por Raios X , Lacase/isolamento & purificação , Conformação Proteica
3.
Artigo em Inglês | MEDLINE | ID: mdl-16511035

RESUMO

Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C-N glycosidic bond of uridine to ribose 1-phosphate and uracil in the pyrimidine-salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 A resolution and refined to an R factor of 22.1% and an Rfree of 27.9%. The hexameric StUPh displays 32 point-group symmetry and utilizes both twofold and threefold non-crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh).


Assuntos
Salmonella typhimurium/enzimologia , Uridina Fosforilase/química , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/enzimologia , Ligação de Hidrogênio , Estrutura Molecular , Conformação Proteica
4.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 4): 709-11, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15039561

RESUMO

The structural udp gene encoding uridine phosphorylase (UPh) was cloned from the Salmonella typhimurium chromosome and overexpressed in Escherichia coli cells. S. typhimurium UPh (StUPh) was purified to apparent homogeneity and crystallized. The primary structure of StUPh has high homology to the UPh from E. coli, but the enzymes differ substantially in substrate specificity and sensitivity to the polarity of the medium. Single crystals of StUPh were grown using hanging-drop vapor diffusion with PEG 8000 as the precipitant. X-ray diffraction data were collected to 2.9 A resolution. Preliminary analysis of the diffraction data indicated that the crystal belonged to space group P6(1(5)), with unit-cell parameters a = 92.3, c = 267.5 A. The solvent content is 37.7% assuming the presence of one StUPh hexamer per asymmetric unit.


Assuntos
Cristalização , Salmonella typhimurium/enzimologia , Uridina Fosforilase/química , Clonagem Molecular , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...