Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 86(10): 1352-1367, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903158

RESUMO

The review discusses the role of metabolic disorders (in particular, insulin resistance) in the development of age-related diseases and normal aging with special emphasis on the changes in postmitotic cells of higher organisms. Caloric restriction helps to prevent such metabolic disorders, which could probably explain its ability to prolong the lifespan of laboratory animals. Maintaining metabolic homeostasis is especially important for the highly differentiated long-lived body cells, whose lifespan is comparable to the lifespan of the organism itself. Normal functioning of these cells can be ensured only upon correct functioning of the cytoplasm clean-up system and availability of all required nutrients and energy sources. One of the central problems in gerontology is the age-related disruption of glucose metabolism leading to obesity, diabetes, metabolic syndrome, and other related pathologies. Along with the adipose tissue, skeletal muscles are the main consumers of insulin; hence the physical activity of muscles, which supports their energy metabolism, delays the onset of insulin resistance. Insulin resistance disrupts the metabolism of cardiomyocytes, so that they fail to utilize the nutrients to perform their functions even being surrounded by a nutrient-rich environment, which contributes to the development of age-related cardiovascular diseases. Metabolic pathologies also alter the nutrient sensitivity of neurons, thus disrupting the action of insulin in the central nervous system. In addition, there is evidence that neurons can develop insulin resistance as well. It has been suggested that affecting nutritional sensors (e.g., AMPK) in postmitotic cells might improve the state of the entire multicellular organism, slow down its aging, and increase the lifespan.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica/métodos , Doenças Metabólicas/prevenção & controle , Nutrientes/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Longevidade , Doenças Metabólicas/patologia , Mitose
2.
Biochemistry (Mosc) ; 86(4): 433-448, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33941065

RESUMO

This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a "regulating valve" that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.


Assuntos
Ritmo Circadiano , Glicogênio Sintase Quinase 3 beta/metabolismo , Longevidade , Envelhecimento , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta/fisiologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais
3.
Cell Biochem Funct ; 37(3): 169-176, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895648

RESUMO

5' adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of energy in the cell, which allows the cell/organism to survive with deficit of ATP. Since AMPK is involved in the adaptation to caloric restriction, the role of age-related changes in AMPK activity in both the aging organism and the aging cell is actively investigated in gerontology. Studies on yeast, worms, flies, rodents, and primates have demonstrated an important effect of this regulator on key signalling pathways involved in the aging process. In some cases, researchers conclude that AMPK promotes aging. However, in our opinion, in such cases, we observe a disturbance in the adaptive ability because of the prolonged cell/organism presence in stressful conditions because the functional capacity of any adaptation system is limited. Interestingly, AMPK can regulate metabolic processes in noncell-autonomous manner. The main effects of AMPK activation in the cell are realized in restriction of proliferation and launching autophagy. In tissues of an aging organism, the ability of AMPK to respond to energy deficit decreases; this fact is especially critical for organs that contain postmitotic cells. In this review, we have tried to consider the involvement of AMPK in age-related changes in the cell and in the organism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Metabolismo Energético , Longevidade , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...