Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 13(10): 1197-1204, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36325399

RESUMO

Transient receptor potential cation channel subfamily V member 1 (TRPV1)-targeted compounds were synthesized by modifying the structure of SB366791, a pharmaceutically representative TRPV1 antagonist. To avoid amide-iminol tautomerization, structurally supported N-methylated amides (i.e., 3-alkoxy-substitued N-meythylamide derivatives of SB366791) were evaluated using a Ca2+ influx assay, in which cells expressed recombinant TRPV1 in the presence of 1.0 µM capsaicin. The antagonistic activities of N-(3-methoxyphenyl)-N-methyl-4-chlorocinnamamide (2) (RLC-TV1004) and N-{3-(3-fluoropropoxy)phenyl}-N-methyl-4-chlorocinnamamide (4) (RLC-TV1006) were found to be approximately three-fold higher (IC50: 1.3 µM and 1.1 µM, respectively) than that of SB366791 (IC50: 3.7 µM). These results will help reinvigorate the potential of SB366791 in medicinal chemistry applications. The 3-methoxy and 3-fluoroalkoxy substituents were used to obtain radioactive [11C]methoxy- or [18F]fluoroalkoxy-incorporated tracers for in vivo positron emission tomography (PET). Using the 11C- or 18F-labeled derivatives, explorative PET imaging trials were performed in rats.

2.
Sci Rep ; 12(1): 10766, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750783

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2) regulates the activities of numerous membrane proteins, including diacylglycerol(DAG)-activated TRPC3/6/7 channels. Although PIP2 binding is known to support DAG-activated TRP channel activity, its binding site remains unknown. We screened for PIP2 binding sites within TRPC6 channels through extensive mutagenesis. Using voltage-sensitive phosphatase (DrVSP), we found that Arg437 and Lys442, located in the channel's pre-S1 domain/shoulder, are crucial for interaction with PIP2. To gain structural insights, we conducted computer protein-ligand docking simulations with the pre-S1 domain/shoulder of TRPC6 channels. Further, the functional significance of PIP2 binding to the pre-S1 shoulder was assessed for receptor-operated channel functions, cross-reactivity to DAG activation, and the kinetic model simulation. These results revealed that basic residues in the pre-S1 domain/shoulder play a central role in the regulation of PIP2-dependent gating. In addition, neutralizing mutation of K771 in the distal TRP box reversed the effect of PIP2 depletion from inhibiting to potentiating channel activity. A similar effect was seen in TRPV1 channels, which suggests that TRPC6 possesses a common but robust polarity switch mediating the PIP2-dependent effect. Overall, these mutagenesis studies reveal functional and structural insights for how basic residues and channel segments in TRP channels are controlled through phosphoinositides recognition.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Monoéster Fosfórico Hidrolases , Sítios de Ligação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos , Canal de Cátion TRPC6/metabolismo
3.
Cell Rep ; 35(10): 109219, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107250

RESUMO

Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells.


Assuntos
Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Drosophila , Insetos
4.
J Gen Physiol ; 152(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32167537

RESUMO

Voltage-sensing phosphatases (VSP) consist of a membrane-spanning voltage sensor domain and a cytoplasmic region that has enzymatic activity toward phosphoinositides (PIs). VSP enzyme activity is regulated by membrane potential, and its activation leads to rapid and reversible alteration of cellular PIP levels. These properties enable VSPs to be used as a tool for studying the effects of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) binding to ion channels and transporters. For example, by applying simple changes in the membrane potential, Danio rerio VSP (Dr-VSP) has been used effectively to manipulate PI(4,5)P2 in mammalian cells with few, if any, side effects. In the present study, we report an enhanced version of Dr-VSP as an improved molecular tool for depleting PI(4,5)P2 from cultured mammalian cells. We modified Dr-VSP in two ways. Its voltage-dependent phosphatase activity was enhanced by introducing an aromatic residue at the position of Leu-223 within a membrane-interacting region of the phosphatase domain called the hydrophobic spine. In addition, selective plasma membrane targeting of Dr-VSP was facilitated by fusion with the N-terminal region of Ciona intestinalis VSP. This modified Dr-VSP (CiDr-VSPmChe L223F, or what we call eVSP) induced more drastic voltage-evoked changes in PI(4,5)P2 levels, using the activities of Kir2.1, KCNQ2/3, and TRPC6 channels as functional readouts. eVSP is thus an improved molecular tool for evaluating the PI(4,5)P2 sensitivity of ion channels in living cells.


Assuntos
Potenciais da Membrana/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Células HEK293 , Humanos , Mamíferos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canal de Cátion TRPC6/metabolismo
5.
Gastroenterology ; 158(6): 1626-1641.e8, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31930989

RESUMO

BACKGROUND & AIMS: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS: We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS: We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.


Assuntos
Idade de Início , Canais de Cálcio/genética , Pancreatite Crônica/genética , Canais de Cátion TRPV/genética , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mutação INDEL , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Pâncreas/patologia , Pancreatite Crônica/patologia , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/metabolismo , Sequenciamento do Exoma , Adulto Jovem
6.
Insect Biochem Mol Biol ; 118: 103308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863874

RESUMO

This study examined diamondback moth (Plutella xylostella) strains showing high-level resistance to cyantraniliprole (KA17 strain) and to flubendiamide and chlorantraniliprole (KU13 strain). The LC50 value of the KA17 strain against cyantraniliprole was ca. 100-fold higher than that of the KU13 strain. The KA17 strain also exhibited high-level resistance to chlorantraniliprole and flubendiamide equivalent to those in the KU13 strain. The KU13 strain showed a higher LC50 value against cyantraniliprole than the susceptible strains. However, the LC50 value of the KU13 strain against cyantraniliprole was below the agriculturally recommended concentration. Subsequent QTL analysis using ddRAD-seq identified the resistance responsible regions of the KA17 and KU13 strains with different diamide resistance profiles. Ryanodine receptor (RyR) gene was included in the identified regions. Single nucleotide polymorphism calling in the RyR gene using RNA-seq found previously reported G4946E (amino acid mutation from glycine to glutamic acid at amino acid position 4946) and novel I4790K (amino acid mutation from isoleucine to lysine at amino acid position 4790) mutations, respectively, in the RyR of the KU13 and KA17 strains. Functional significance of I4790K in the resistance was confirmed in calcium imaging of the human embryonic kidney 293T cell line expressing Bombyx mori RyR with the mutation. This reporting is the first describing I4790K as a fundamental mechanism responsible for the resistance to the diamides including cyantraniliprole. From this study, we also report up-regulated expression of some degradation enzymes and that of the RyR gene in the KA17 and KU13 strains based on results of RNA-seq data analysis.


Assuntos
Diamida/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
7.
J Am Soc Nephrol ; 30(9): 1587-1603, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266820

RESUMO

BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestrutura , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Actinas/ultraestrutura , Animais , Sítios de Ligação , Calmodulina/genética , Mutação com Ganho de Função , Glomerulosclerose Segmentar e Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Fenótipo , Podócitos , Domínios Proteicos , Canal de Cátion TRPC6/ultraestrutura
8.
Cell Rep ; 26(5): 1213-1226.e7, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699350

RESUMO

Pancreatic ß cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in ß cells to regulate Ca2+ influx for insulin secretion. ß cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of ß cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the ß cell plasma membrane, which were markedly decreased in ELKS-KO ß cells. Mechanistically, ELKS directly interacted with the VDCC-ß subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the ß cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.


Assuntos
Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Subunidades Proteicas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/deficiência , Ligação Proteica/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/deficiência
9.
Oncogene ; 38(20): 3962-3969, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670776

RESUMO

CNNM4 is a Mg2+ transporter highly expressed in the colon epithelia. Its importance in regulating intracellular Mg2+ levels and cancer development has been documented, but how CNNM4 function affects the dynamic homeostasis of the epithelial tissue remains unclear. Here, we show that Cnnm4 deficiency promotes cell proliferation and partly suppresses cell differentiation in the colon epithelia, making them vulnerable to cancer development. Such phenotypic characteristics are highly similar to those of mice lacking Trpv1, which encodes the cation channel involved in capsaicin-stimulated Ca2+ influx. Indeed, Ca2+-imaging analyses using the organoid culture reveal that Ca2+ influx stimulated by capsaicin is greatly impaired by Cnnm4 deficiency. Moreover, EGF receptor signaling is constitutively activated in the colon epithelia of Cnnm4-deficient mice, as is the case with Trpv1-deficient mice. The administration of gefitinib, a clinically available inhibitor of EGF receptor, cancels the augmented proliferation of cells observed in Cnnm4-deficient mice. Collectively, these results establish the functional interplay between Mg2+ and Ca2+ in the colon epithelia, which is crucial for maintaining the dynamic homeostasis of the epithelial tissue.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Colo/citologia , Animais , Proteínas de Transporte de Cátions/genética , Proliferação de Células/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Fator de Crescimento Epidérmico/metabolismo , Epitélio/metabolismo , Feminino , Gefitinibe/farmacologia , Magnésio/metabolismo , Masculino , Camundongos Mutantes , Técnicas de Cultura de Órgãos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
10.
Cardiovasc Res ; 113(10): 1243-1255, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898995

RESUMO

AIMS: Transient receptor potential cation channel subfamily melastatin member 4 (TRPM4), a Ca2+-activated nonselective cation channel abundantly expressed in the heart, has been implicated in conduction block and other arrhythmic propensities associated with cardiac remodelling and injury. The present study aimed to quantitatively evaluate the arrhythmogenic potential of TRPM4. METHODS AND RESULTS: Patch clamp and biochemical analyses were performed using expression system and an immortalized atrial cardiomyocyte cell line (HL-1), and numerical model simulation was employed. After rapid desensitization, robust reactivation of TRPM4 channels required high micromolar concentrations of Ca2+. However, upon evaluation with a newly devised, ionomycin-permeabilized cell-attached (Iono-C/A) recording technique, submicromolar concentrations of Ca2+ (apparent Kd = ∼500 nM) were enough to activate this channel. Similar submicromolar Ca2+ dependency was also observed with sharp electrode whole-cell recording and in experiments coexpressing TRPM4 and L-type voltage-dependent Ca2+ channels. Numerical simulations using a number of action potential (AP) models (HL-1, Nygren, Luo-Rudy) incorporating the Ca2+- and voltage-dependent gating parameters of TRPM4, as assessed by Iono-C/A recording, indicated that a few-fold increase in TRPM4 activity is sufficient to delay late AP repolarization and further increases (≥ six-fold) evoke early afterdepolarization. These model predictions are consistent with electrophysiological data from angiotensin II-treated HL-1 cells in which TRPM4 expression and activity were enhanced. CONCLUSIONS: These results collectively indicate that the TRPM4 channel is activated by a physiological range of Ca2+ concentrations and its excessive activity can cause arrhythmic changes. Moreover, these results demonstrate potential utility of the first AP models incorporating TRPM4 gating for in silico assessment of arrhythmogenicity in remodelling cardiac tissue.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Simulação por Computador , Átrios do Coração/metabolismo , Frequência Cardíaca , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Análise Numérica Assistida por Computador , Canais de Cátion TRPM/metabolismo , Potenciais de Ação/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Células HEK293 , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Cinética , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Período Refratário Eletrofisiológico , Canais de Cátion TRPM/genética
11.
J Biol Chem ; 292(22): 9365-9381, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28377503

RESUMO

Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and ß subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Domínios Proteicos
12.
J Physiol ; 595(8): 2465-2477, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28130847

RESUMO

KEY POINTS: Cav1.2 channels maintain activity through interactions with calmodulin (CaM). In this study, activities of the Cav1.2 channel (α1C) and of mutant-derivatives, C-terminal deleted (α1CΔ) and α1CΔ linked with CaM (α1CΔCaM), were compared in the inside-out mode. α1CΔ with CaM, but not without CaM, and α1CΔCaM were active, suggesting that CaM induced channel activity through a dynamic interaction with the channel, even without the distal C-tail. ATP induced α1C activity with CaM and enhanced activity of the mutant channels. Okadaic acid mimicked the effect of ATP on the wildtype but not mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels through their dynamic interactions. ATP effects involve mechanisms both related and unrelated to channel phosphorylation. CaM-linked channels are useful tools for investigating Cav1.2 channels in the inside-out mode; the fast run-down is prevented by only ATP and the slow run-down is nearly absent. ABSTRACT: Calmodulin (CaM) plays a critical role in regulation of Cav1.2 Ca2+ channels. CaM binds to the channel directly, maintaining channel activity and regulating it in a Ca2+ -dependent manner. To explore the molecular mechanisms involved, we compared the activity of the wildtype channel (α1C) and mutant derivatives, C-terminal deleted (α1C∆) and α1C∆ linked to CaM (α1C∆CaM). These were co-expressed with ß2a and α2δ subunits in HEK293 cells. In the inside-out mode, α1C and α1C∆ showed minimal open-probabilities in a basic internal solution (run-down), whereas α1C∆ with CaM and α1C∆CaM maintained detectable channel activity, confirming that CaM was necessary, but not sufficient, for channel activity. Previously, we reported that ATP was required to maintain channel activity of α1C. Unlike α1C, the mutant channels did not require ATP for activation in the early phase (3-5 min). However, α1C∆ with CaM + ATP and α1C∆CaM with ATP maintained activity, even in the late phase (after 7-9 min). These results suggested that CaM and ATP interacted dynamically with the proximal C-terminal tail of the channel and, thereby, produced channel activity. In addition, okadaic acid, a protein phosphatase inhibitor, could substitute for the effects of ATP on α1C but not on the mutant channels. These results supported the hypothesis that CaM and ATP maintain activity of Cav1.2 channels, further indicating that ATP has dual effects. One maintains phosphorylation of the channel and the other becomes apparent when the distal carboxyl-terminal tail is removed.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Calmodulina/farmacologia , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Coelhos , Ratos
13.
Mol Pharmacol ; 89(3): 348-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733543

RESUMO

Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a new class of synthetic neurotrophic drugs.


Assuntos
Fatores de Crescimento Neural/metabolismo , Piperazinas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Coelhos , Ratos , Ratos Wistar , Canais de Cátion TRPC/agonistas
14.
Channels (Austin) ; 10(1): 14-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26054929

RESUMO

This review article is written to specially pay tribute to David T. Yue who was an outstanding human being and an excellent scientist who exuded passion and creativity. He exemplified an inter-disciplinary scientist who was able to cross scientific boundaries effortlessly in order to provide amazing understanding on how calcium channels work. This article provides a glimpse of some of the research the authors have the privilege to collaborate with David and it attempts to provide the thinking behind some of the research done. In a wider context, we highlight that calcium channel function could be exquisitely modulated by interaction with a tethered calmodulin. Post-transcriptional modifications such as alternative splicing and RNA editing further influence the Ca(2+)-CaM mediated processes such as calcium dependent inhibition and/or facilitation. Besides modifications of electrophysiological and pharmacological properties, protein interactions with the channels could also be influenced in a splice-variant dependent manner.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Transcrição Gênica , Processamento Alternativo/genética , Animais , Encéfalo/metabolismo , Sistema Cardiovascular/metabolismo , Humanos
15.
Cell Calcium ; 58(3): 296-306, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26142343

RESUMO

Autism is a neurodevelopmental psychiatric disorder characterized by impaired reciprocal social interaction, disrupted communication, and restricted and stereotyped patterns of interests. Autism is known to have a strong genetic component. Although mutations in several genes account for only a small proportion of individuals with autism, they provide insight into potential biological mechanisms that underlie autism, such as dysfunction in Ca(2+) signaling, synaptic dysfunction, and abnormal brain connectivity. In autism patients, two mutations have been reported in the Rab3 interacting molecule 3 (RIM3) gene. We have previously demonstrated that RIM3 physically and functionally interacts with voltage-dependent Ca(2+) channels (VDCCs) expressed in neurons via the ß subunits, and increases neurotransmitter release. Here, by introducing corresponding autism-associated mutations that replace glutamic acid residue 176 with alanine (E176A) and methionine residue 259 with valine (M259V) into the C2B domain of mouse RIM3, we demonstrate that both mutations partly cancel the suppressive RIM3 effect on voltage-dependent inactivation of Ba(2+) currents through P/Q-type CaV2.1 recombinantly expressed in HEK293 cells. In recombinant N-type CaV2.2 VDCCs, the attenuation of the suppressive RIM3 effect on voltage-dependent inactivation is conserved for M259V but not E176A. Slowing of activation speed of P/Q-type CaV2.1 currents by RIM3 is abolished in E176A, while the physical interaction between RIM3 and ß subunits is significantly attenuated in M259V. Moreover, increases by RIM3 in depolarization-induced Ca(2+) influx and acetylcholine release are significantly attenuated by E176A in rat pheochromocytoma PC12 cells. Thus, our data raise the interesting possibility that autism phenotypes are elicited by synaptic dysfunction via altered regulation of presynaptic VDCC function and neurotransmitter release.


Assuntos
Transtorno Autístico/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Mutação , Animais , Transtorno Autístico/metabolismo , Sinalização do Cálcio/genética , Fatores de Troca do Nucleotídeo Guanina , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neurônios/fisiologia , Células PC12 , Ratos
16.
Front Pharmacol ; 6: 22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717302

RESUMO

Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that carry receptor-operated Ca(2+) currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5)P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5)P2 and the possible role of PI(4,5)P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5)P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5)P2 using a model simulation that could explain the complicated effects of PI(4,5)P2 on different ROCs.

17.
Clin Calcium ; 25(1): 47-58, 2015 Jan.
Artigo em Japonês | MEDLINE | ID: mdl-25530522

RESUMO

Calcium ion (Ca2+) is the only second messenger well recognized for the established biological role among various inorganic ions. When cellular Ca2+ controls diverse biological phenomena, it is regulated under exquisitely precise mechanisms. Many proteins have been identified as Ca2+ signal-regulating factors, and still new "players" are added to the repertory. In this review, we will focus on Ca2+ channels, Ca2+-binding proteins,and signaling pathways controlled by these Ca2+ signal-regulating proteins, in order to discuss on molecular bases, biological significance, and possible future developments of Ca2+ signaling.


Assuntos
Osso e Ossos/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio da Dieta/metabolismo , Humanos
19.
J Pharmacol Sci ; 126(3): 186-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25367262

RESUMO

Phosphoinositides(4,5)-bisphosphates [PI(4,5)P2] critically controls membrane excitability, the disruption of which leads to pathophysiological states. PI(4,5)P2 plays a primary role in regulating the conduction and gating properties of ion channels/transporters, through electrostatic and hydrophobic interactions that allow direct associations. In recent years, the development of many molecular tools have brought deep insights into the mechanisms underlying PI(4,5)P2-mediated regulation. This review summarizes the methods currently available to manipulate the cell membrane PI(4,5)P2 level including pharmacological interventions as well as newly designed molecular tools. We concisely introduce materials and experimental designs suitable for the study of PI(4,5)P2-mediated regulation of ion-conducting molecules, in order to assist researchers who are interested in this area. It is our further hope that the knowledge introduced in this review will help to promote our understanding about the pathology of diseases such as cardiac arrhythmias, bipolar disorders, and Alzheimer's disease which are somehow associated with a disruption of PI(4,5)P2 metabolism.


Assuntos
Membrana Celular/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Humanos , Ativação do Canal Iônico , Canais Iônicos/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Imagem Molecular , Transdução de Sinais
20.
Nat Commun ; 5: 4994, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256292

RESUMO

Mutations in the ankyrin repeat domain (ARD) of TRPV4 are responsible for several channelopathies, including Charcot-Marie-Tooth disease type 2C and congenital distal and scapuloperoneal spinal muscular atrophy. However, the molecular pathogenesis mediated by these mutations remains elusive, mainly due to limited understanding of the TRPV4 ARD function. Here we show that phosphoinositide binding to the TRPV4 ARD leads to suppression of the channel activity. Among the phosphoinositides, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) most potently binds to the TRPV4 ARD. The crystal structure of the TRPV4 ARD in complex with inositol-1,4,5-trisphosphate, the head-group of PI(4,5)P2, and the molecular-dynamics simulations revealed the PI(4,5)P2-binding amino-acid residues. The TRPV4 channel activities were increased by titration or hydrolysis of membrane PI(4,5)P2. Notably, disease-associated TRPV4 mutations that cause a gain-of-function phenotype abolished PI(4,5)P2 binding and PI(4,5)P2 sensitivity. These findings identify TRPV4 ARD as a lipid-binding domain in which interactions with PI(4,5)P2 normalize the channel activity in TRPV4.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Animais , Repetição de Anquirina , Galinhas , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...