Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pract Lab Med ; 33: e00306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36593945

RESUMO

Objectives: Research on the relationship between diseases and genes and the advancement of genetic analysis technologies have made genetic testing in medical care possible. There are various methods for genetic testing, including PCR-based methods and next-generation sequencing; however, screening tests in clinical laboratories are becoming more diverse; therefore, novel measurement systems and equipment are required to meet the needs of each situation. In this study, we aimed to develop a novel microarray-based genetic analysis system that uses a Peltier element to overcome the issues of conventional microarrays, such as the long measurement time and high cost. Methods: We constructed a microarray system to detect the UDP-glucuronosyltransferase gene polymorphisms UGT1A1*6 and UGT1A1*28 in patients eligible for irinotecan hydrochloride treatment for use in clinical laboratories. To evaluate the performance of the system, the hybridization temperature and reaction time were determined, and the results were compared with those obtained using a conventional hybridization oven. Results: The hybridization temperature reached its target in 1/27th of the time required by the conventional system. We assessed 111 human clinical samples and found that our results agreed with those obtained using existing methods. The total time for the newly developed device was reduced by 85 min compared to that for existing methods, as the automated DNA microarray eliminates the time that existing methods spend on manual operation. Conclusions: The surface treatment technology used in our system enables high-density and strong DNA fixation, allowing the construction of a measurement system suitable for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...