Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr A Found Adv ; 77(Pt 4): 289-295, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196291

RESUMO

A local structure analysis method based on convergent-beam electron diffraction (CBED) has been used for refining isotropic atomic displacement parameters and five low-order structure factors with sin θ/λ ≤ 0.28 Å-1 of potassium tantalate (KTaO3). Comparison between structure factors determined from CBED patterns taken at the zone-axis (ZA) and Bragg-excited conditions is made in order to discuss their precision and sensitivities. Bragg-excited CBED patterns showed higher precision in the refinement of structure factors than ZA patterns. Consistency between higher precision and sensitivity of the Bragg-excited CBED patterns has been found only for structure factors of the outer zeroth-order Laue-zone reflections with larger reciprocal-lattice vectors. Correlation coefficients among the refined structure factors in the refinement of Bragg-excited patterns are smaller than those of the ZA ones. Such smaller correlation coefficients lead to higher precision in the refinement of structure factors.

2.
Nat Commun ; 11(1): 4582, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917897

RESUMO

Ferroaxial materials that exhibit spontaneous ordering of a rotational structural distortion with an axial vector symmetry have gained growing interest, motivated by recent extensive studies on ferroic materials. As in conventional ferroics (e.g., ferroelectrics and ferromagnetics), domain states will be present in the ferroaxial materials. However, the observation of ferroaxial domains is non-trivial due to the nature of the order parameter, which is invariant under both time-reversal and space-inversion operations. Here we propose that NiTiO3 is an order-disorder type ferroaxial material, and spatially resolve its ferroaxial domains by using linear electrogyration effect: optical rotation in proportion to an applied electric field. To detect small signals of electrogyration (order of 10-5 deg V-1), we adopt a recently developed difference image-sensing technique. Furthermore, the ferroaxial domains are confirmed on nano-scale spatial resolution with a combined use of scanning transmission electron microscopy and convergent-beam electron diffraction. Our success of the domain visualization will promote the study of ferroaxial materials as a new ferroic state of matter.

3.
Sci Adv ; 6(25): eaaz9744, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596450

RESUMO

Nanometer-scale skyrmions are prospective candidates for information bits in low-power consumption devices owing to their topological nature and controllability with low current density. Studies on skyrmion dynamics in different classes of materials have exploited the topological Hall effect and current-driven fast motion of skyrmionic bubbles. However, the small current track motion of a single skyrmion and few-skyrmion aggregates remains elusive. Here, we report the tracking of creation and extinction and motion of 80-nm-size skyrmions upon directional one-current pulse excitations at low current density of the order of 109 A m-2 in designed devices with the notched hole. The Hall motion of a single skyrmion and the torque motions of few-skyrmion aggregates have been directly revealed. The results exemplify low-current density controls of skyrmions, which will pave the way for the application of skyrmions.

4.
Nat Commun ; 8(1): 866, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021629

RESUMO

Chirality of matter can produce unique responses in optics, electricity and magnetism. In particular, magnetic crystals transmit their handedness to the magnetism via antisymmetric exchange interaction of relativistic origin, producing helical spin orders as well as their fluctuations. Here we report for a chiral magnet MnSi that chiral spin fluctuations manifest themselves in the electrical magnetochiral effect, i.e. the nonreciprocal and nonlinear response characterized by the electrical resistance depending on inner product of current and magnetic field. Prominent electrical magnetochiral signals emerge at specific temperature-magnetic field-pressure regions: in the paramagnetic phase just above the helical ordering temperature and in the partially-ordered topological spin state at low temperatures and high pressures, where thermal and quantum spin fluctuations are conspicuous in proximity of classical and quantum phase transitions, respectively. The finding of the asymmetric electron scattering by chiral spin fluctuations may explore new electromagnetic functionality in chiral magnets.The magnetism-induced chirality in electron transportation is of fundamental importantance in condensed matter physics but the origin is still unclear. Here the authors demonstrate that the asymmetric electron scattering by chiral spin fluctuations can be the key to the electrical magnetochiral effect in MnSi.

5.
Sci Rep ; 5: 13207, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289749

RESUMO

We report that a ferroelectric-like metallic state with reduced anisotropy of polarization is created by the doping of conduction electrons into BaTiO3, on the bases of x-ray/electron diffraction and infrared spectroscopic experiments. The crystal structure is heterogeneous in nanometer-scale, as enabled by the reduced polarization anisotropy. The enhanced infrared intensity of soft phonon along with the resistivity reduction suggests the presence of unusual electron-phonon coupling, which may be responsible for the emergent ferroelectric structure compatible with metallic state.

6.
Nat Commun ; 6: 7638, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134284

RESUMO

Skyrmions, topologically protected vortex-like nanometric spin textures in magnets, have been attracting increasing attention for emergent electromagnetic responses and possible technological applications for spintronics. In particular, metallic magnets with chiral and cubic/tetragonal crystal structure may have high potential to host skyrmions that can be driven by low electrical current excitation. However, experimental observations of skyrmions have been limited to below room temperature for the metallic chiral magnets, specifically for the MnSi-type B20 compounds. Towards technological applications, transcending this limitation is crucial. Here we demonstrate the formation of skyrmions with unique spin helicity both at and above room temperature in a family of cubic chiral magnets: ß-Mn-type Co-Zn-Mn alloys with a different chiral space group from that of B20 compounds. Lorentz transmission electron microscopy, magnetization and small-angle neutron scattering measurements unambiguously reveal formation of a skyrmion crystal under application of a magnetic field in both thin-plate and bulk forms.

7.
Nat Nanotechnol ; 9(8): 611-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25064393

RESUMO

The valley degree of freedom of electrons is attracting growing interest as a carrier of information in various materials, including graphene, diamond and monolayer transition-metal dichalcogenides. The monolayer transition-metal dichalcogenides are semiconducting and are unique due to the coupling between the spin and valley degrees of freedom originating from the relativistic spin-orbit interaction. Here, we report the direct observation of valley-dependent out-of-plane spin polarization in an archetypal transition-metal dichalcogenide--MoS2--using spin- and angle-resolved photoemission spectroscopy. The result is in fair agreement with a first-principles theoretical prediction. This was made possible by choosing a 3R polytype crystal, which has a non-centrosymmetric structure, rather than the conventional centrosymmetric 2H form. We also confirm robust valley polarization in the 3R form by means of circularly polarized photoluminescence spectroscopy. Non-centrosymmetric transition-metal dichalcogenide crystals may provide a firm basis for the development of magnetic and electric manipulation of spin/valley degrees of freedom.

8.
Nat Nanotechnol ; 8(10): 723-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24013133

RESUMO

Chirality--that is, left- or right-handedness--is an important concept in a broad range of scientific areas. In condensed matter, chirality is found not only in molecular or crystal forms, but also in magnetic structures. A magnetic skyrmion is a topologically stable spin vortex structure, as observed in chiral-lattice helimagnets, and is one example of such a structure. The spin swirling direction (skyrmion helicity) should be closely related to the underlying lattice chirality via the relativistic spin-orbit coupling. Here, we report on the correlation between skyrmion helicity and crystal chirality in alloys of helimagnets Mn(1-x)Fe(x)Ge with varying compositions by Lorentz transmission electron microscopy and convergent-beam electron diffraction over a broad range of compositions (x = 0.3-1.0). The skyrmion lattice constant shows non-monotonous variation with composition x, with a divergent behaviour around x = 0.8, where the correlation between magnetic helicity and crystal chirality changes sign. This originates from continuous variation of the spin-orbit coupling strength and its sign reversal in the metallic alloys as a function of x. Controllable spin-orbit coupling may offer a promising way to tune skyrmion size and helicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...