Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6550, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753804

RESUMO

The aerosol oxidative potential (OP) is considered to better represent the acute health hazards of aerosols than the mass concentration of fine particulate matter (PM2.5). The proposed major contributors to OP are water soluble transition metals and organic compounds, but the relative magnitudes of these compounds to the total OP are not yet fully understood. In this study, as the first step toward the numerical prediction of OP, the cumulative OP (OPtm*) based on the top five key transition metals, namely, Cu, Mn, Fe, V, and Ni, was defined. The solubilities of metals were assumed constant over time and space based on measurements. Then, the feasibility of its prediction was verified by comparing OPtm* values based on simulated metals to that based on observed metals in East Asia. PM2.5 typically consists of primary and secondary species, while OPtm* only represents primary species. This disparity caused differences in the domestic contributions of PM2.5 and OPtm*, especially in large cities in western Japan. The annual mean domestic contributions of PM2.5 were 40%, while those of OPtm* ranged from 50 to 55%. Sector contributions to the OPtm* emissions in Japan were also assessed. The main important sectors were the road brake and iron-steel industry sectors, followed by power plants, road exhaust, and railways.

2.
Geohealth ; 4(9): e2020GH000259, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999946

RESUMO

Emission inventories of anthropogenic transition metals, which contribute to aerosol oxidative potential (OP), in Asia (Δx = 0.25°, monthly, 2000-2008) and Japan (Δx = 2 km, hourly, mainly 2012) were developed, based on bottom-up inventories of particulate matters and metal profiles in a speciation database for particulate matters. The new inventories are named Transition Metal Inventory (TMI)-Asia v1.0 and TMI-Japan v1.0, respectively. It includes 10 transition metals in PM2.5 and PM10, which contributed to OP based on reagent experiments, namely, Cu, Mn, Co, V, Ni, Pb, Fe, Zn, Cd, and Cr. The contributions of sectors in the transition metals emission in Japan were also investigated. Road brakes and iron-steel industry are primary sources, followed by other metal industry, navigation, incineration, power plants, and railway. In order to validate the emission inventory, eight elements such as Cu, Mn, V, Ni, Pb, Fe, Zn, and Cr in anthropogenic dust and those in mineral dust were simulated over East Asia and Japan with Δx = 30 km and Δx = 5 km domains, respectively, and compared against the nation-wide seasonal observations of PM2.5 elements in Japan and the long-term continuous observations of total suspended particles (TSPs) at Yonago, Japan in 2013. Most of the simulated elements generally agreed with the observations, while Cu and Pb were significantly overestimated. This is the first comprehensive study on the development and evaluation of emission inventory of OP active elements, but further improvement is needed.

3.
Environ Sci Technol ; 52(15): 8456-8466, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973047

RESUMO

Because emission rates of particulate matter (PM) from stationary combustion sources have been measured without dilution or cooling in Japan, condensable PM has not been included in Japanese emission inventories. In this study, we modified an emission inventory to include condensable PM from stationary combustion sources based on the recent emission surveys using a dilution method. As a result, emission rates of organic aerosol (OA) increased by a factor of 7 over Japan. Stationary combustion sources in the industrial and energy sectors became the largest contributors to OA emissions over Japan in the revised estimates (filterable-plus-condensable PM), while road transport and biomass burning were the dominant OA sources in the previous estimate (filterable PM). These results indicate that condensable PM from large combustion sources makes critical contributions to total PM2.5 emissions. Simulated contributions of condensable PM from combustion sources to atmospheric OA drastically increased around urban and industrial areas, including the Kanto region, where OA concentrations increased by factors of 2.5-6.1. Consideration of condensable PM from stationary combustion sources improved model estimates of OA in winter but caused overestimation of OA concentrations in summer. Contributions of primary and secondary OA should be further evaluated by comparing with organic tracer measurements.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Monitoramento Ambiental , Japão
4.
J Air Waste Manag Assoc ; 67(4): 412-420, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27689311

RESUMO

Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NOx) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NOx emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NOx ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NOx ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NOx emission as well as the estimation of exhaust-induced HONO/NOx ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NOx ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NOx ratios varied from 0.16 to 1.00 %. The HONO/NOx ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles. IMPLICATIONS: Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NOx ratio of 0.8% has possibly linked to underestimation of the total HONO budget and consequently underestimation of OH radical budget. The recently reported HONO/NOx ratio of ~1.6% was used to stimulate HONO emission, which resulted in increased HONO concentrations during morning peak hours and its impact of 14% OH increment in the morning. However, the results were still lower than the measured concentrations. More studies should be conducted to establish an updated traffic-induced HONO/NOx ratio.


Assuntos
Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Ácido Nitroso/análise , Emissões de Veículos/análise , Dióxido de Carbono/análise , Gases , Gasolina , Radical Hidroxila , Veículos Automotores , Espécies Reativas de Nitrogênio/análise
5.
J Air Waste Manag Assoc ; 64(4): 374-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24843910

RESUMO

UNLABELLED: Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). IMPLICATIONS: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental , Nitratos/análise , Ácido Nítrico/análise , Material Particulado/análise , Sulfatos/análise , Atmosfera/química , Umidade , Modelos Teóricos , Tamanho da Partícula , Estações do Ano , Temperatura , Tóquio , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...