Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wound Repair Regen ; 32(3): 229-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38534045

RESUMO

The capability to produce suture material using three-dimensional (3D) printing technology may have applications in remote health facilities where rapid restocking of supplies is not an option. This is a feasibility study evaluating the usability of 3D-printed sutures in the repair of a laceration wound when compared with standard suture material. The 3D-printed suture material was manufactured using a fused deposition modelling 3D printer and nylon 3D printing filament. Study participants were tasked with performing laceration repairs on the pigs' feet, first with 3-0 WeGo nylon suture material, followed by the 3D-printed nylon suture material. Twenty-six participants were enrolled in the study. Survey data demonstrated statistical significance with how well the 3D suture material performed with knot tying, 8.9 versus 7.5 (p = 0.0018). Statistical significance was observed in the 3D-printed suture's ultimate tensile strength when compared to the 3-0 Novafil suture (274.8 vs. 199.8 MPa, p = 0.0096). The 3D-printed suture also demonstrated statistical significance in ultimate extension when compared to commercial 3-0 WeGo nylon suture (49% vs. 37%, p = 0.0215). This study was successful in using 3D printing technology to manufacture suture material and provided insight into its usability when compared to standard suture material.


Assuntos
Estudos de Viabilidade , Impressão Tridimensional , Técnicas de Sutura , Suturas , Resistência à Tração , Animais , Suínos , Lacerações/cirurgia , Teste de Materiais , Nylons , Cicatrização , Humanos , Modelos Animais de Doenças
2.
Chem Commun (Camb) ; 58(74): 10337-10340, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039790

RESUMO

A general approach to increase the adhesion of metal films to commodity plastic substrates using a metal-chelating polymer, polyethyleneimine, in conjunction with patterned electroless deposition is described. This general fabrication method is compatible with a diverse array of plastics and metals with properties applicable to flexible electronic circuits and electrochemical cells.

3.
Nat Commun ; 12(1): 3114, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035293

RESUMO

Materials and strategies applicable to the dynamic transport of microdroplets are relevant to surface fluidics, self-cleaning materials, thermal management systems, and analytical devices. Techniques based on electrowetting, topographic micropatterns, and thermal/chemical gradients have advanced considerably, but dynamic microdroplet transport remains a challenge. This manuscript reports the fabrication of mechano-tunable, microtextured chemical gradients on elastomer films and their use in controlled microdroplet transport. Specifically, discreet mechanical deformations of these films enabled dynamic tuning of the microtextures and thus transport along surface-chemical gradients. The interplay between the driving force of the chemical gradient and the microtopography was characterized, facilitating accurate prediction of the conditions (droplet radius and roughness) which supported transport. In this work, the use of microtextured surface chemical gradients in mechano-adaptive materials with microdroplet manipulation functionality was highlighted.

4.
Adv Sci (Weinh) ; 7(15): 2000769, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775160

RESUMO

Techniques that enable the spatial arrangement of living cells into defined patterns are broadly applicable to tissue engineering, drug screening, and cell-cell investigations. Achieving large-scale patterning with single-cell resolution while minimizing cell stress/damage is, however, technically challenging using existing methods. Here, a facile and highly scalable technique for the rational design of reconfigurable arrays of cells is reported. Specifically, microdroplets of cell suspensions are assembled using stretchable surface-chemical patterns which, following incubation, yield ordered arrays of cells. The microdroplets are generated using a microfluidic-based aerosol spray nozzle that enables control of the volume/size of the droplets delivered to the surface. Assembly of the cell-loaded microdroplets is achieved via mechanically induced coalescence using substrates with engineered surface-wettability patterns based on extracellular matrices. Robust cell proliferation inside the patterned areas is demonstrated using standard culture techniques. By combining the scalability of aerosol-based delivery and microdroplet surface assembly with user-defined chemical patterns of controlled functionality, the technique reported here provides an innovative methodology for the scalable generation of large-area cell arrays with flexible geometries and tunable resolution.

5.
Soft Matter ; 16(26): 6038-6043, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568337

RESUMO

Biological systems generate crystalline materials with properties and morphologies that cannot be duplicated using synthetic procedures. Developing strategies that mimic the control mechanisms found in nature would enhance the range of functional materials available for numerous technological applications. Herein, a biomimetic approach based on the mechano-dynamic chemistry of silicone surfaces was used to control the rate of heterogeneous CaCO3 nucleation. Specifically, stretching the silicone surface redistributed functional groups, tuning interfacial energy and thus the rate of CaCO3 crystal formation, as predicted by classical nucleation rate laws. We extended this procedure using microrelief patterns to program surface strain fields to spatially control the location of nucleation. The strategies presented herein represent a fundamental departure from traditional bottom-up crystal engineering, where surfaces are chemically static, to them being active participants in the nucleation process controlling the outcome both spatially and temporally.

6.
Soft Matter ; 16(25): 5819-5826, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32324186

RESUMO

Biological systems demonstrate exquisite three dimensional (3D) control over crystal nucleation and growth using soft micro/nanoenvironments, such as vesicles, for reagent transport and confinement. It remains challenging to mimic such biomineralization processes using synthetic systems. A synthetic mineralization strategy applicable to the synthesis of artificial magnetosomes with programmable magnetic domains is described. This strategy relies on the compartmentalization of precursors in surfactant-stabilized liquid microdroplets which, when contacted, spontaneously form lipid bilayers that support reagent transport and interface-confined magnetite nucleation and growth. The resulting magnetic domains are polarized and thus readily manipulated using magnetic fields or assembled using droplet-droplet interactions. This strategy presents a new, liquid phase procedure for the synthesis of vesicles with geometrically controlled inorganic features that would be difficult to produce otherwise. The artificial magnetosomes demonstrated could find use in, for example, drug/cargo delivery, droplet microfluidics, and formulation science.


Assuntos
Magnetossomos/química , Cristalização , Óxido Ferroso-Férrico/química , Bicamadas Lipídicas/química
7.
ACS Appl Mater Interfaces ; 11(36): 33452-33457, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31432664

RESUMO

Silicone elastomers are used in a variety of "stretchable" technologies (e.g., wearable electronics and soft robotics) that require the elastomeric components to accommodate varying magnitudes of mechanical stress during operation; however, there is limited understanding of how mechanical stress influences the surface chemistry of these elastomeric components despite the potential importance of this property with regards to overall function. In this study, plasma-oxidized silicone (poly(dimethylsiloxane)) films were systematically subjected to various amounts of tensile stress and the resulting surface chemical changes were monitored using contact angle measurements, X-ray photoelectron spectroscopy, and gas chromatography-mass spectrometry. Understanding the influence of mechanical stress on these materials made possible the development of a facile method for the rapid, on-demand switching of surface wettability and the generation of surface wettability patterns and gradients. The use of mechanical stress to control surface wettability is broadly applicable to the fields of microfluidics, soft robotics, printing, and to the design of adaptable materials and sensors.

8.
Chemphyschem ; 20(7): 909-925, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30801856

RESUMO

Polymeric microstructures (PMs) are useful to a broad range of technologies applicable to, for example, sensing, energy storage, and soft robotics. Due to the diverse application space of PMs, many techniques (e. g., photolithography, 3D printing, micromilling, etc.) have been developed to fabricate these structures. Stemming from their generality and unique capabilities, the tools encompassed by soft lithography (e. g., replica molding, microcontact printing, etc.), which use soft elastomeric materials as masters in the fabrication of PMs, are particularly relevant. By taking advantage of the characteristics of elastomeric masters, particularly their mechanical and chemical properties, soft lithography has enabled the use of non-planar substrates and relatively inexpensive equipment in the generation of many types of PMs, redefining existing communities and creating new ones. Traditionally, these elastomeric masters have been produced from relief patterns fabricated using photolithography; however, recent efforts have led to the emergence of new methods that make use of masters that are self-forming, dynamic in their geometric and chemical properties, 3D in architecture, and/or sacrificial (i. e., easily removed/released using phase changes). These "next generation" soft lithographic masters include self-assembled liquid droplets, microscale balloons, templates derived from natural materials, and hierarchically microstructured surfaces. The new methods of fabrication supported by these unique masters enable access to numerous varieties of PMs (e. g., those with hierarchical microstructures, overhanging features, and 3D architectures) that would not be possible following established methods of soft lithography. This review explores these emergent soft lithographic methods, addressing their operational principles and the application space they can impact.

9.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315917

RESUMO

The lamination of mechanically stiff structures to elastic materials is prevalent in biological systems and popular in many emerging synthetic systems, such as soft robotics, microfluidics, stretchable electronics, and pop-up assemblies. The disparate mechanical and chemical properties of these materials have made it challenging to develop universal synthetic procedures capable of reliably adhering to these classes of materials together. Herein, a simple and scalable procedure is described that is capable of covalently laminating a variety of commodity ("off-the-shelf") thermoplastic sheets to silicone rubber films. When combined with laser printing, the nonbonding sites can be "printed" onto the thermoplastic sheets, enabling the direct fabrication of microfluidic systems for actuation and liquid handling applications. The versatility of this approach in generating thin, multifunctional laminates is demonstrated through the fabrication of milliscale soft actuators and grippers with hinged articulation and microfluidic channels with built-in optical filtering and pressure-dependent geometries. This method of fabrication offers several advantages, including technical simplicity, process scalability, design versatility, and material diversity. The concepts and strategies presented herein are broadly applicable to the soft robotics, microfluidics, and advanced and additive manufacturing communities where hybrid rubber/plastic structures are prevalent.

10.
Angew Chem Int Ed Engl ; 57(5): 1236-1240, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29235216

RESUMO

This work describes the fabrication of numerous hydrogel microstructures (µ-gels) via a process called "surface molding." Chemically patterned elastomeric-assembly substrates were used to organize and manipulate the geometry of liquid prepolymer microdroplets, which, following photo-initiated crosslinking, maintained the desired morphology. By adjusting the state of strain during the crosslinking process, a continua of structures could be created using one pattern. These arrays of µ-gels have stimuli-responsive properties that are directly applicable to actuation where the basis shape and array geometry of the µ-gels can be used to rationally generate microactuators with programmed motions. As a method, "surface molding," represents a powerful addition to the soft-lithographic toolset that can be readily applied to the simultaneous synthesis of large numbers of geometrically and functionally distinct polymeric microstructures.

11.
Nanoscale ; 9(24): 8393-8400, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28604901

RESUMO

The use of fluid flow to control crystal morphology during the liquid-phase synthesis of inorganic nanomaterials is a relatively under explored approach. Synthetic strategies that take advantage of flow effects present the opportunity to tune several parameters (e.g., flow velocity and direction) in addition to conventional growth parameters (e.g., time, temperature, chemistry, and concentration), and thus enable additional levels of control in the bottom-up synthesis of nanomaterials. The current work reports the application of microfluidics to the rational synthesis of spatially variant arrays of branched zinc oxide (ZnO) nanorods with predictable morphological and compositional characteristics. Specifically, the dislocation driven growth rates of branches within ZnO nanorod arrays was rationally controlled using dynamic, high-velocity precursor flow, yielding ZnO mesostructures with morphology that depended on the location within the arrays. This approach compliments current synthetic strategies and is generally applicable to a range of materials with a diverse set of functional properties (e.g., optical, magnetic, electronic) and applications.

12.
Small ; 13(8)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982514

RESUMO

The directed assembly of micro-/nanoscale objects relies on physical or chemical processes to generate structures that are not possible via self-assembly alone. A relatively unexplored strategy in directed assembly is the "active" manipulation of building blocks through deformations of elastomeric substrates. This manuscript reports a method which uses macroscopic mechanical deformations of chemically modified silicone films to realize the rational assembly of microscopic polymer structures. Specifically, polystyrene microparticles are deposited onto polydimethylsiloxane substrates using microcontact-printing where, through a process that involved stretching/relaxing the substrates and bonding of the particles, they are elaborated into microstructures of various sizes, shapes, symmetries, periodicities, and functionalities. The resulting polymeric microstructures can be released and redeposited onto planar/nonplanar surfaces. When building blocks with different properties (e.g., those with fluorescent and catalytic properties) are used, it is possible to fabricate structures with heterogeneous functionality. This method can be extended to the assembly of numerous micro-/nanoscale building blocks (e.g., colloidal organic/inorganic materials) with rational control over the size, shape, and functionality of the product. As a strategy, the use of substrate deformations to enable the micromanipulation and fabrication of a potentially diverse set of assemblies represents a powerful tool useful to, for example, nanotechnology and micromanufacturing.

13.
Adv Mater ; 28(13): 2595-600, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26823187

RESUMO

A micromechano-optical material is rapidly and reversibly switched between distinct states of reflectance by simply stretching and relaxing the hybrid structure. The material is fabricated and controlled by leveraging the ability of soft elastic substrates to regulate the growth and morphological evolution of a chemically deposited polycrystalline thin film.

14.
Lab Chip ; 15(9): 2009-17, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25791933

RESUMO

Microfluidic channels are typically fabricated in polydimethylsiloxane (PDMS) using soft lithography and sealed against a support substrate using various irreversible/reversible techniques-the most widely used method is the irreversible bonding of PDMS to glass using oxygen plasma. These techniques are limited in their ability to seal channels against rough, uneven, and/or three-dimensional substrates. This manuscript describes the design and fabrication of soft microfluidic systems from combinations of silicone elastomers that can be reversibly sealed against an array of materials of various topographies/geometries using compression. These soft systems have channels with cross-sectional dimensions that can be decreased, reversibly, by hundreds of microns using compressive stress, and the ability to interface with virtually any support substrate. These capabilities go beyond that achievable with devices fabricated in PDMS alone and enable the integration of microfluidic functionality directly with rough and/or 3D surfaces, providing new opportunities in solution processing useful to, for example, materials science and the analytical/forensic sciences.

15.
Adv Mater ; 26(34): 5991-9, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25080193

RESUMO

Soft, 3D elastomeric structures and composite structures are easy to fabricate using click-e-bricks, and the internal architecture of these structures together with the capabilities built into the bricks themselves provide mechanical, optical, electrical, and fluidic functions.

16.
Anal Chem ; 86(15): 7478-85, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24983331

RESUMO

This paper demonstrates that the gas-filled compartments in the packing material commonly called "bubble wrap" can be repurposed in resource-limited regions as containers to store liquid samples, and to perform bioanalyses. The bubbles of bubble wrap are easily filled by injecting the samples into them using a syringe with a needle or a pipet tip, and then sealing the hole with nail hardener. The bubbles are transparent in the visible range of the spectrum, and can be used as "cuvettes" for absorbance and fluorescence measurements. The interiors of these bubbles are sterile and allow storage of samples without the need for expensive sterilization equipment. The bubbles are also permeable to gases, and can be used to culture and store micro-organisms. By incorporating carbon electrodes, these bubbles can be used as electrochemical cells. This paper demonstrates the capabilities of the bubbles by culturing E. coli, growing C. elegans, measuring glucose and hemoglobin spectrophotometrically, and measuring ferrocyanide electrochemically, all within the bubbles.


Assuntos
Plásticos , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos
17.
Lab Chip ; 14(1): 189-99, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24196070

RESUMO

One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Elasticidade , Desenho de Equipamento , Pressão
18.
ACS Nano ; 7(12): 11369-78, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24295225

RESUMO

Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

19.
Acc Chem Res ; 46(7): 1616-26, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23738750

RESUMO

Nanoscience and nanotechnology impact our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. We can approach this core challenge in nanoscience and nanotechnology from two perspectives: (a) how to controllably grow high-quality nanomaterials with desired dimensions, morphologies, and material compositions and (b) how to produce them in a large quantity at reasonable cost. Because many chemical and physical properties of nanomaterials are size- and shape-dependent, rational syntheses of nanomaterials to achieve desirable dimensionalities and morphologies are essential to exploit their utilities. In this Account, we show that the dislocation-driven growth mechanism, where screw dislocation defects provide self-perpetuating growth steps to enable the anisotropic growth of various nanomaterials at low supersaturation, can be a powerful and versatile synthetic method for a wide variety of nanomaterials. Despite significant progress in the last two decades, nanomaterial synthesis has often remained an "art", and except for a few well-studied model systems, the growth mechanisms of many anisotropic nanostructures remain poorly understood. We strive to go beyond the empirical science ("cook-and-look") and adopt a fundamental and mechanistic perspective to the anisotropic growth of nanomaterials by first understanding the kinetics of the crystal growth process. Since most functional nanomaterials are in single-crystal form, insights from the classical crystal growth theories are crucial. We pay attention to how screw dislocations impact the growth kinetics along different crystallographic directions and how the strain energy of defected crystals influences their equilibrium shapes. Furthermore, such inquiries are supported by detailed structural investigation to identify the evidence of dislocations. The dislocation-driven growth mechanism not only can unify the various explanations behind a wide variety of exotic nanoscale morphologies but also allows the rational design of catalyst-free solution-phase syntheses that could enable the scalable and low cost production of nanomaterials necessary for large scale applications, such as solar and thermoelectric energy conversions, energy storage, and nanocomposites. In this Account, we discuss the fundamental theories of the screw dislocation driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. By highlighting our recent discoveries in the last five years, we show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. These discoveries are complemented by selected examples of anisotropic crystal growth from other researchers. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...