Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 252(12): 1471-1481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37431812

RESUMO

BACKGROUND: Echinoderms have long been utilized as experimental materials to study the genetic control of developmental processes and their evolution. Among echinoderms, the molecular study of starfish embryos has received considerable attention across research topics such as gene regulatory network evolution and larval regeneration. Recently, experimental techniques to manipulate gene functions have been gradually established in starfish as the feasibility of genome editing methods was reported. However, it is still unclear when these techniques cause genome cleavage during the development of starfish, which is critical to understand the timeframe and applicability of the experiment during early development of starfish. RESULTS: We herein reported that gene functions can be analyzed by the genome editing method TALEN in early embryos, such as the blastula of the starfish Patiria pectinifera. We injected the mRNA of TALEN targeting rar, which was previously constructed, into eggs of P. pectinifera and examined the efficiency of genome cleavage through developmental stages from 6 to 48 hours post fertilization. CONCLUSION: The results will be key knowledge not only when designing TALEN-based experiments but also when assessing the results.


Assuntos
Estrelas-do-Mar , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Animais , Estrelas-do-Mar/genética , Desenvolvimento Embrionário/genética , Blastocisto
2.
Dev Growth Differ ; 65(7): 384-394, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392142

RESUMO

Spiralians, one of the major clades of bilaterians, share a unique development known as spiralian development, characterized by the formation of tiers of cells called quartets, which exhibit different developmental potentials along the animal-vegetal axis. Recently, spiralian-specific TALE-type homeobox genes (SPILE) have been identified, some of which show zygotic and staggered expression patterns along the animal-vegetal axis and function in quartet specification in mollusks. However, it is unclear which maternal molecular components control the zygotic expression of these transcription factors. In this study, we focused on SPILE-E, a maternal transcription factor, and investigated its expression and function in mollusks. We found that the maternal and ubiquitous expression of SPILE-E in the cleavage stages is conserved in molluskan species, including limpets, mussels, and chitons. We knocked down SPILE-E in limpets and revealed that the expression of transcription factors specifically expressed in the first quartet (1q2 ; foxj1b) and second quartet (2q; SPILE-B) was abolished, whereas the macromere-quartet marker (SPILE-C) was ectopically expressed in 1q2 in SPILE-E morphants. Moreover, we showed that the expression of SPILE-A, which upregulates SPILE-B but represses SPILE-C expression, decreased in SPILE-E morphants. Consistent with changes in the expression pattern of the above transcription factors, SPILE-E-morphant larvae exhibited patchy or complete loss of expression of marker genes of ciliated cells and shell fields, possibly reflecting incomplete specification of 1q2 and 2q. Our results provide a molecular framework for quartet specification and highlight the importance of maternal lineage-specific transcription factors in the development and evolution of spiralians.


Assuntos
Blastômeros , Genes Homeobox , Animais , Genes Homeobox/genética , Moluscos/genética , Fatores de Transcrição/genética
3.
Evodevo ; 14(1): 7, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101206

RESUMO

BACKGROUND: In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself. RESULTS: Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs. CONCLUSIONS: Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.

4.
Dev Biol ; 492: 119-125, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36240875

RESUMO

The evolution of the biphasic life cycle in marine invertebrates has attracted considerable interest in zoology. We recently provided evidence that retinoic acid (RA) is involved in the regulation of metamorphosis in starfish. It also functions in life cycle transitions of jellyfish (cnidaria). Thus, documenting the evolutionarily conserved role of RA in such transitions will help to trace the life cycle evolution of bilaterians and cnidarians. In this study, we examined the molecular mechanisms by which RA signaling is involved in the commencement of metamorphosis in starfish. First, we measured RA levels during the larval and metamorphosis stages by liquid chromatography-tandem mass spectrometry. We found that all-trans RA levels in the larval body are high before larvae acquire competence for metamorphosis, suggesting that the commencement of metamorphosis is not controlled by increased RA synthesis. Furthermore, the suppression of rar gene expression by TALEN-mediated gene knockout revealed that RA receptor (RAR) is essential for metamorphosis. These observations suggest that the initiation of metamorphosis is regulated at the level of synthesized RA to activate RAR. We discuss the divergence of ligand molecules and receptors during the evolution of life cycle regulation.


Assuntos
Estrelas-do-Mar , Tretinoína , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Metamorfose Biológica/fisiologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Estágios do Ciclo de Vida , Larva/metabolismo
5.
Dev Growth Differ ; 64(4): 198-209, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441397

RESUMO

Homeobox genes play essential roles in the early development of many animals. Although the repertoire of most homeobox genes, including three amino acid loop extension (TALE)-type homeobox genes, is conserved in animals, spiralian-TALE (SPILE) genes are a notable exception. In this study, SPILE genes were extracted from the genomic data of 22 mollusk species and classified into four clades (-A/C, -B, -D, and -E) to determine which SPILE genes exhibit dynamic repertoire changes. While SPILE-D and -E duplications were rarely observed, SPILE-B duplication was observed in the bivalve lineage and SPILE-A/C duplication was observed in multiple clades. Conversely, most or all SPILE genes were lost in cephalopods and in some gastropod lineages. SPILE gene expression patterns were also analyzed in multiple mollusk species using publicly available RNA-seq data. The majority of SPILE genes examined, particularly those in the A/C- and B-clades, were specifically expressed during early development, suggesting that most SPILE genes exert specific roles in early development. This comprehensive cataloging and characterization revealed a dynamic evolutionary history, including SPILE-A/C and -B gene duplications and the loss of SPILE genes in several lineages. Furthermore, this study provides a useful resource for studying the molecular mechanism of spiralian early development and the evolution of young and lineage-specific transcription factors.


Assuntos
Aminoácidos , Genes Homeobox , Animais , Evolução Molecular , Duplicação Gênica , Genes Homeobox/genética , Moluscos/genética , Filogenia
6.
Curr Top Dev Biol ; 146: 1-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152980

RESUMO

Evolution of gene regulatory networks (GRN) that orchestrate the highly coordinated course of development, is made possible by the network's robust nature for incorporating change without detrimental developmental outcome. It can be considered that the upstream network regulating early development, has immense influence over succeeding pathways thus may be less subjected to evolutionary modification. However, recent studies show incorporation of novel genes in such early developmental pathways such as the echinoderm pmar1 as evidence for drastic change occurring high in the GRN hierarchy. Here we discuss the mechanisms that underlie divergence of early developmental pathways utilizing promising insights from the evolution of echinoderm early mesoderm specification pathway of Pmar1-HesC double negative gate found solely in the euechinoid sea urchin lineage, as well as examples from other groups such as Spiralia and Drosophila.


Assuntos
Equinodermos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Equinodermos/genética , Redes Reguladoras de Genes , Mesoderma/fisiologia , Ouriços-do-Mar
7.
Evodevo ; 12(1): 11, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663437

RESUMO

BACKGROUND: Despite the conserved pattern of the cell-fate map among spiralians, bivalves display several modified characteristics during their early development, including early specification of the D blastomere by the cytoplasmic content, as well as the distinctive fate of the 2d blastomere. However, it is unclear what changes in gene regulatory mechanisms led to such changes in cell specification patterns. Spiralian-TALE (SPILE) genes are a group of spiralian-specific transcription factors that play a role in specifying blastomere cell fates during early development in limpets. We hypothesised that the expansion of SPILE gene repertoires influenced the evolution of the specification pattern of blastomere cell fates. RESULTS: We performed a transcriptome analysis of early development in the purplish bifurcate mussel and identified 13 SPILE genes. Phylogenetic analysis of the SPILE gene in molluscs suggested that duplications of SPILE genes occurred in the bivalve lineage. We examined the expression patterns of the SPILE gene in mussels and found that some SPILE genes were expressed in quartet-specific patterns, as observed in limpets. Furthermore, we found that several SPILE genes that had undergone gene duplication were specifically expressed in the D quadrant, C and D quadrants or the 2d blastomere. These expression patterns were distinct from the expression patterns of SPILE in their limpet counterparts. CONCLUSIONS: These results suggest that, in addition to their ancestral role in quartet specification, certain SPILE genes in mussels contribute to the specification of the C and D quadrants. We suggest that the expansion of SPILE genes in the bivalve lineage contributed to the evolution of a unique cell fate specification pattern in bivalves.

8.
Sci Rep ; 11(1): 20111, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635691

RESUMO

The larval skeleton of the echinoderm is believed to have been acquired through co-option of a pre-existing gene regulatory network (GRN); that is, the mechanism for adult skeleton formation in the echinoderm was deployed in early embryogenesis during echinoderm diversification. To explore the evolutionary changes that occurred during co-option, we examined the mechanism for adult skeletogenesis using the starfish Patiria pectinifera. Expression patterns of skeletogenesis-related genes (vegf, vegfr, ets1/2, erg, alx1, ca1, and clect) suggest that adult skeletogenic cells develop from the posterior coelom after the start of feeding. Treatment with inhibitors and gene knockout using transcription activator-like effector nucleases (TALENs) suggest that the feeding-nutrient sensing pathway activates Vegf signaling via target of rapamycin (TOR) activity, leading to the activation of skeletogenic regulatory genes in starfish. In the larval skeletogenesis of sea urchins, the homeobox gene pmar1 activates skeletogenic regulatory genes, but in starfish, localized expression of the pmar1-related genes phbA and phbB was not detected during the adult skeleton formation stage. Based on these data, we provide a model for the adult skeletogenic GRN in the echinoderm and propose that the upstream regulatory system changed from the feeding-TOR-Vegf pathway to a homeobox gene-system during co-option of the skeletogenic GRN.


Assuntos
Osso e Ossos/citologia , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Larva/citologia , Estrelas-do-Mar/crescimento & desenvolvimento , Animais , Osso e Ossos/metabolismo , Embrião não Mamífero/metabolismo , Evolução Molecular , Larva/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Estrelas-do-Mar/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Development ; 147(4)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32001441

RESUMO

In several model animals, the earliest phases of embryogenesis are regulated by lineage-specific genes, such as Drosophila bicoid Sea urchin (echinoid) embryogenesis is initiated by zygotic expression of pmar1, a paired-class homeobox gene that has been considered to be present only in the lineage of modern urchins (euechinoids). In euechinoids, Pmar1 promotes endomesoderm specification by repressing the hairy and enhancer of split C (hesC) gene. Here, we have identified the basal echinoid (cidaroid) pmar1 gene, which also promotes endomesoderm specification but not by repressing hesC A further search for related genes demonstrated that other echinoderms have pmar1-related genes named phb Functional analyses of starfish Phb proteins indicated that, similar to cidaroid Pmar1, they promote activation of endomesoderm regulatory gene orthologs via an unknown repressor that is not HesC. Based on these results, we propose that Pmar1 may have recapitulated the regulatory function of Phb during the early diversification of echinoids and that the additional repressor HesC was placed under the control of Pmar1 in the euechinoid lineage. This case provides an exceptional model for understanding how early developmental processes diverge.


Assuntos
Endoderma/fisiologia , Proteínas de Homeodomínio/fisiologia , Mesoderma/fisiologia , Ouriços-do-Mar/embriologia , Animais , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Larva/fisiologia , Fenótipo , Filogenia , Receptores Notch/fisiologia , Ouriços-do-Mar/genética
10.
Biomolecules ; 10(1)2019 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881787

RESUMO

Many marine invertebrates have a life cycle with planktonic larvae, although the evolution of this type of life cycle remains enigmatic. We recently proposed that the regulatory mechanism of life cycle transition is conserved between jellyfish (Cnidaria) and starfish (Echinoderm); retinoic acid (RA) signaling regulates strobilation and metamorphosis, respectively. However, the function of RA signaling in other animal groups is poorly understood in this context. Here, to determine the ancestral function of RA signaling in echinoderms, we investigated the role of RA signaling during the metamorphosis of the feather star, Antedon serrata (Crinoidea, Echinodermata). Although feather stars have different larval forms from starfish, we found that exogenous RA treatment on doliolaria larvae induced metamorphosis, like in starfish. Furthermore, blocking RA synthesis or binding to the RA receptor suppressed metamorphosis. These results suggested that RA signaling functions as a regulator of metamorphosis in the ancestor of echinoderms. Our data provides insight into the evolution of the animal life cycle from the viewpoint of RA signaling.


Assuntos
Equinodermos/crescimento & desenvolvimento , Equinodermos/metabolismo , Estágios do Ciclo de Vida , Transdução de Sinais , Tretinoína/metabolismo , Animais
11.
Gene ; 701: 9-14, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898708

RESUMO

Recent studies have revealed a common cartilage genetic regulatory network among vertebrates, cephalochordates, and arthropods. It has been proposed that this network was originally established for the dense connective tissues of ancestral invertebrates and subsequently recruited for chondrocyte differentiation in various lineages. This reasoning prompted questions about whether the evolution of cartilage from dense connective tissues occurred in the common ancestors of vertebrates. Alternatively, the evolution of cartilage may have occurred independently in agnathans and in gnathostomes, because extant agnathans (cyclostomes) are known to possess a matrix composition different from that of gnathostomes. Here, we identified the gene which is likely to encode one of the matrix proteins unique to lamprey cartilage, which we designated pharymprin. Pharymprin shows specific expression in larval pharyngeal chondrocytes. Like lamprins, which are the known matrix proteins of lamprey trabecular cartilage, pharymprin is also composed of repeated sequences. However, the repeated sequence is distinct from that of lamprins. The presence of two distinct matrix proteins in lamprey cartilage supports the hypothesis that true cartilage evolved independently in cyclostomes and gnathostomes.


Assuntos
Condrócitos/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas de Peixes/biossíntese , Regulação da Expressão Gênica/fisiologia , Lampreias/metabolismo , Faringe/metabolismo , Animais , Condrócitos/citologia , Proteínas da Matriz Extracelular/genética , Proteínas de Peixes/genética , Lampreias/genética , Faringe/citologia
13.
Dev Growth Differ ; 61(2): 158-165, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30561008

RESUMO

The origin of the notochord is a central issue in chordate evolution. This study examined the development of the acorn worm pygochord, a putative homologue of the notochord. Because the pygochord differentiates only after metamorphosis, the developmental was followed process by inducing regeneration after artificial amputation in Ptychodera flava. It was found that although the regeneration of the posterior part of the body did not proceed via formation of an obvious regeneration bud, pygochord regeneration was observed within a few weeks, possibly via trans-differentiation of endoderm cells. The expression of the fibrillary collagen gene (Fcol) and elav in the pygochord during regeneration was detected. This indicates that pygochord cells are not part of gut epithelial cells, but that they differentiated as a distinct cell type. Our gene expression analyses do not provide supporting evidence for the homology between the pygochord and notochord, but rather favored the convergent evolution between them.


Assuntos
Evolução Biológica , Cordados não Vertebrados/crescimento & desenvolvimento , Notocorda/embriologia , Regeneração , Animais , Diferenciação Celular , Cordados não Vertebrados/citologia , Notocorda/citologia
14.
Evodevo ; 9: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721256

RESUMO

BACKGROUND: Although retinoic acid (RA) signaling plays a crucial role in the body patterning of chordates, its function in non-chordate invertebrates, other than its mediation of environmental cues triggering metamorphosis in cnidarians, is largely unknown. We investigated the role of RA signaling in the metamorphosis of starfish (Echinodermata). RESULTS: We found that exogenous RA treatment induced metamorphosis in starfish larvae. In contrast, inhibitors of RA synthesis and RA receptors suppressed metamorphosis triggered by attachment to a substrate. Gene expressions of the RA signaling component were detected in competent larvae. CONCLUSIONS: This study provides insight into the ancestral function of RA signaling, which is conserved in the metamorphosis of cnidarians and starfish.

15.
Gene ; 659: 37-43, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548859

RESUMO

The marine environment around Japan experienced significant changes during the Cenozoic Era. In this study, we report findings suggesting that this dynamic history left behind traces in the genome of the Japanese sand dollar species Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I sequences did not indicate fragmentation of the current local populations of P. japonica around Japan, two different types of intron sequence were found in the Alx1 locus. We inferred that past fragmentation of the populations account for the presence of two types of nuclear sequences as alleles in the Alx1 intron of P. japonica. It is likely that the split populations have intermixed in recent times; hence, we did not detect polymorphisms in the sequences reflecting the current localization of the species. In addition, we found two allelic sequences of theAlx1 intron in the sister species P. rubra. The divergence times of the two types of Alx1 intron sequences were estimated at approximately 14.9 and 4.0 million years ago for P. japonica and P. rubra, respectively. Our study indicates that information from the intron sequences of nuclear genes can enhance our understanding of past genetic events in organisms.


Assuntos
Núcleo Celular/genética , Ouriços-do-Mar/genética , Análise de Sequência de DNA/métodos , Animais , Evolução Molecular , Íntrons , Japão , Filogenia
16.
Nat Ecol Evol ; 1(12): 1942-1949, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29085062

RESUMO

Spiralians, including molluscs, annelids and platyhelminths, share a unique development process that includes the typical geometry of early cleavage and early segregation of cell fate in blastomeres along the animal-vegetal axis. However, the molecular mechanisms underlying this early cell fate segregation are largely unknown. Here, we report spiralian-specific expansion of the three-amino-acid loop extension (TALE) class of homeobox genes. During early development, some of these TALE genes are expressed in staggered domains along the animal-vegetal axis in the limpet Nipponacmea fuscoviridis and the polychaete Spirobranchus kraussii. Inhibition or overexpression of these genes alters the developmental fate of blastomeres, as predicted by the gene expression patterns. These results suggest that the expansion of novel TALE genes plays a critical role in the establishment of a novel cell fate segregation mechanism in spiralians.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/genética , Invertebrados/genética , Animais , Blastômeros , Crassostrea/embriologia , Crassostrea/genética , Gastrópodes/embriologia , Gastrópodes/genética , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/metabolismo , Invertebrados/embriologia , Poliquetos/embriologia , Poliquetos/genética
17.
Evol Dev ; 18(4): 267-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27402572

RESUMO

Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution.


Assuntos
Equinodermos/embriologia , Proteínas de Ligação a RNA/genética , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Equinodermos/classificação , Equinodermos/genética , Equinodermos/metabolismo , Embrião não Mamífero/metabolismo , Expressão Gênica , Células Germinativas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Zoological Lett ; 2: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900483

RESUMO

INTRODUCTION: Bivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P. fucata genome assembly. RESULTS: We present a new genome assembly of the pearl oyster, Pinctada fucata (version 2.0). To update the assembly, we conducted additional sequencing, obtaining accumulated sequence data amounting to 193× the P. fucata genome. Sequence redundancy in contigs that was caused by heterozygosity was removed in silico, which significantly improved subsequent scaffolding. Gene model version 2.0 was generated with the aid of manual gene annotations supplied by the P. fucata research community. Comparison of mollusc and other bilaterian genomes shows that gene arrangements of Hox, ParaHox, and Wnt clusters in the P. fucata genome are similar to those of other molluscs. Like the Pacific oyster, P. fucata possesses many genes involved in environmental responses and in immune defense. Phylogenetic analyses of heat shock protein70 and C1q domain-containing protein families indicate that extensive expansion of genes occurred independently in each lineage. Several gene duplication events prior to the split between the pearl oyster and the Pacific oyster are also evident. In addition, a number of tandem duplications of genes that encode shell matrix proteins are also well characterized in the P. fucata genome. CONCLUSIONS: Both the Pinctada and Crassostrea lineages have expanded specific gene families in a lineage-specific manner. Frequent duplication of genes responsible for shell formation in the P. fucata genome explains the diversity of mollusc shell structures. These duplications reveal dynamic genome evolution to forge the complex physiology that enables bivalves to employ a sessile lifestyle in the intertidal zone.

19.
PLoS One ; 11(2): e0149067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26866800

RESUMO

Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.


Assuntos
Equinodermos/fisiologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Estrelas-do-Mar/genética , Estrelas-do-Mar/fisiologia , Animais , Evolução Biológica , Equinodermos/genética , Perfilação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Larva/genética , Larva/fisiologia , Fenótipo , Filogenia , Pepinos-do-Mar/genética , Pepinos-do-Mar/fisiologia , Análise de Sequência de RNA , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Evol Dev ; 18(2): 89-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26773338

RESUMO

Echinoderm pluteus larvae are considered a classical example of convergent evolution that occurred in sea urchins and brittle stars. Several genes are known to be involved in the development of pluteus arms in sea urchins, including fgfA, pax2/5/8, pea3, otp, wnt5, and tet. To determine whether the convergent evolution of larval arms also involves these genes in brittle stars, their expression patterns were determined in brittle star. We found that all genes showed similar expression in the arms of ophiopluteus to that seen in echinopluteus, suggesting that convergent evolution of pluteus arms occurred by recruitment of a similar set of genes. This may be explained by our observation that some of these genes are also expressed in the spine rudiment of direct-type development sea urchins. We propose an evolutionary scenario wherein the pluteus arms of both echinopluteus and ophiopluteus were acquired by independent co-options of the genetic module responsible for the projection of the adult skeleton.


Assuntos
Ouriços-do-Mar/anatomia & histologia , Ouriços-do-Mar/genética , Estrelas-do-Mar/anatomia & histologia , Estrelas-do-Mar/genética , Animais , Ouriços-do-Mar/embriologia , Estrelas-do-Mar/embriologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...