Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(3): 3603-3609, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32159939

RESUMO

Chiral plasmonic nanodevices whose handedness can be switched reversibly between right and left by external stimulation have attracted much attention. However, they require delicate DNA nanostructures and/or continuous external stimulation. In this study, those issues are addressed by using metal-inorganic nanostructures and photoinduced reversible redox reactions at the nanostructures, namely, site-selective oxidation due to plasmon-induced charge separation under circularly polarized visible light (CPL) and reduction by UV-induced TiO2 photocatalysis. We irradiate gold nanorods (AuNRs) supported on TiO2 with right- or left-CPL to generate electric fields with chiral distribution around each AuNR and to deposit PbO2 at the sites where the electric fields are localized, for fixing the chirality to the AuNR. The nanostructures thus prepared exhibit circular dichroism (CD) based on longitudinal and transverse plasmon modes of the AuNRs. Their chirality given by right-CPL (or left-CPL) is locked until PbO2 is rereduced under UV light. After unlocking by UV, the chirality can be switched by left-CPL (or right-CPL) irradiation, resulting in reversed CD signals and locking the switch again. The handedness of the chiral plasmonic nanodevice can be switched reversibly and repeatedly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA