Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 90(18): 10903-10909, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30118207

RESUMO

In this study, electrochemical detection of viable bacterial cells was performed using a tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which was converted to an insoluble and redox active formazan compound in viable microbial cells. The insolubility of this formazan was effectively exploited as a surface-confined redox event. An indium-tin-oxide electrode was applied to a microbial suspension that had been incubated with MTT and was heated to dry for the extraction and adsorption of formazan. Drying led to the appearance of a distinctive voltammetric oxidation peak at +0.1 V vs Ag|AgCl, the magnitude of which was successfully correlated to the number of viable microbes in the suspension. Thus, the electrochemical detection of formazan was effectively coupled with the thermal lysis of microbes. It is also noteworthy that this lysis-adsorption technique was highly selective to the hydrophobic formazan molecule due to the removal of hydrophilic cell components during equilibration in a phosphate buffer before voltammetric measurement. This technique was capable of detecting microbes above 2.8 × 101 CFU mL-1 and required only a 1 h incubation. The results of this study indicate that the sensitivity of the present technique is up to 10 000-fold higher than that of MTT colorimetry. The higher sensitivity was mainly ascribed to the concentration of the microbially produced formazan on the electrode by thorough desiccation of the bacterial suspension.


Assuntos
Bactérias/citologia , Técnicas Eletroquímicas/instrumentação , Viabilidade Microbiana , Sais de Tetrazólio/química , Tiazóis/química , Técnicas Bacteriológicas/instrumentação , Eletrodos , Desenho de Equipamento , Oxirredução , Solubilidade
2.
Anal Chem ; 87(16): 8416-23, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26218886

RESUMO

We have developed a novel bacterial detection technique by desiccating a bacterial suspension deposited on an electrode. It was also found that the use of an indium-tin-oxide (ITO) electrode dramatically improved the resolution of the voltammogram, allowing us to observe two pairs of redox peaks, each assigned to the adsorption of isoprenoid ubiquinone (UQn) and menaquinone (MKn), which were present in the bacterial cell envelopes, giving midpeak potentials of -0.015 and -0.25 V versus Ag|AgCl|saturated KCl| at pH 7.0, respectively. Most of the microorganisms classified in both the Gram-negative and -positive bacteria gave well-defined redox peaks, demonstrating that this procedure made the detection of the quinones possible without solvent extraction. It has been demonstrated that the present technique can be used not only for the detection of bacteria, but also for profiling of the isoprenoid quinones, which play important roles in electron and proton transfer in microorganisms. In this respect, the present technique provides a much more straightforward way than the solvent extraction in that one sample can be prepared in 1 min by heat evaporation of a suspension containing the targeted bacteria, which has been applied on the ITO electrode.


Assuntos
Técnicas Eletroquímicas , Bactérias Gram-Positivas/química , Quinonas/análise , Eletrodos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Compostos de Estanho/química , Vitamina K 2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...