Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci Monit ; 23: 4526-4532, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28931802

RESUMO

BACKGROUND Hepatitis C virus (HCV) infection and metabolic diseases including nonalcoholic steatohepatitis (NASH) exhibit a complex interplay. Although free fatty acid-mediated apoptosis is a prominent feature of NASH, the impact of HCV infection on hepatocyte lipotoxicity has remained largely unexplored. The study aimed at identifying whether infection by HCV affected the apoptotic pathway in hepatocytes during fatty acid assault. MATERIAL AND METHODS OR6 cells, which are derived from human hepatocellular carcinoma Huh-7 cells and harbor a full-length HCV RNA genome replication system, were treated with palmitate. Apoptosis was examined by 4',6-diamidino-2-phenylindole staining. Activation and expression of JNK, Bim, cIAP-1, and Mcl-1 were examined by immunoblotting. mRNA expression of CHOP, a major player in endoplasmic reticulum stress-mediated apoptosis, was assessed by real-time PCR. RESULTS Palmitate-induced hepatocyte apoptosis was significantly enhanced in OR6 cells compared to cured cells, in which the HCV genome had been eradicated by treatment with interferon-α. Although basal expression of CHOP mRNA was enhanced in OR6 cells compared to cured cells, it was similarly upregulated in both cell lines following palmitate treatment. Notably, palmitate-induced JNK phosphorylation was accentuated in OR6 cells compared to cured cells. Inhibition of JNK with SP600125 attenuated palmitate-induced apoptosis. Palmitate-mediated upregulation of BH3-only protein Bim, which acts downstream of JNK, was also enhanced in OR6 cells compared to cured cells. In contrast, Mcl-1 and cIAP-1 were equally reduced in OR6 cells and cured cells following palmitate treatment. CONCLUSIONS These findings suggest that during lipoapoptosis, HCV infection may enhance hepatocyte toxicity by increasing JNK phosphorylation.


Assuntos
Hepacivirus/metabolismo , Hepatite C Crônica/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatite C Crônica/enzimologia , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Metabolismo dos Lipídeos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/virologia , Ácido Palmítico/farmacologia , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição CHOP/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...