Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 198: 186-200, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613466

RESUMO

Anthropogenic and biogenic controls on the surface-atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary between working days and non-working days, except at the woodland site. Suburban vegetation offsets some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Observations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges are significantly different between sites, demonstrating the impacts of increasing urban density (and decreasing vegetation fraction) on the CO2 flux to the atmosphere.


Assuntos
Dióxido de Carbono/metabolismo , Cidades/estatística & dados numéricos , Florestas , Densidade Demográfica , Árvores/fisiologia , Atmosfera , Dióxido de Carbono/análise , Inglaterra , Humanos , Modelos Teóricos , Fotossíntese , Estações do Ano
2.
Philos Trans R Soc Lond B Biol Sci ; 363(1491): 639-58, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17652070

RESUMO

Globally, agriculture accounts for 80-90% of all freshwater used by humans, and most of that is in crop production. In many areas, this water use is unsustainable; water supplies are also under pressure from other users and are being affected by climate change. Much effort is being made to reduce water use by crops and produce 'more crop per drop'. This paper examines water use by crops, taking particularly a physiological viewpoint, examining the underlying relationships between carbon uptake, growth and water loss. Key examples of recent progress in both assessing and improving crop water productivity are described. It is clear that improvements in both agronomic and physiological understanding have led to recent increases in water productivity in some crops. We believe that there is substantial potential for further improvements owing to the progress in understanding the physiological responses of plants to water supply, and there is considerable promise within the latest molecular genetic approaches, if linked to the appropriate environmental physiology. We conclude that the interactions between plant and environment require a team approach looking across the disciplines from genes to plants to crops in their particular environments to deliver improved water productivity and contribute to sustainability.


Assuntos
Adaptação Fisiológica , Agricultura/métodos , Produtos Agrícolas/fisiologia , Plantas/metabolismo , Água/metabolismo , Carbono/metabolismo , Conservação dos Recursos Naturais , Produtos Agrícolas/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas Geneticamente Modificadas , Abastecimento de Água
3.
Environ Sci Technol ; 40(4): 1114-9, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16572763

RESUMO

Despite great recent progress, hunger and poverty remain widespread and agriculturally driven environmental damage is widely prevalent. The idea of agricultural sustainability centers on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, and that lead to improvements in food productivity. Here we show the extent to which 286 recent interventions in 57 poor countries covering 37 M ha (3% of the cultivated area in developing countries) have increased productivity on 12.6 M farms while improving the supply of critical environmental services. The average crop yield increase was 79% (geometric mean 64%). All crops showed water use efficiency gains, with the highest improvement in rainfed crops. Potential carbon sequestered amounted to an average of 0.35 t C ha(-1) y(-1). If a quarter of the total area under these farming systems adopted sustainability enhancing practices, we estimate global sequestration could be 0.1 Gt C y(-1). Of projects with pesticide data, 77% resulted in a decline in pesticide use by 71% while yields grew by 42%. Although it is uncertain whether these approaches can meet future food needs, there are grounds for cautious optimism, particularly as poor farm households benefit more from their adoption.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Produtos Agrícolas , Países em Desenvolvimento , Abastecimento de Alimentos
4.
Int J Biometeorol ; 47(4): 221-6, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12733054

RESUMO

The photosynthetic development of pedunculate oak ( Quercus robur L.) sun leaves in a mature woodland canopy in Oxfordshire, southern England, was investigated in situ during 3 years with contrasting weather conditions. Development of full photosynthetic capacity (indicated by light-saturated net assimilation rates, A(max), typical of the summer period) took between approximately 50 and 70 days after budbreak in different years. This slow development means that these leaves do not utilise a substantial fraction of the seasonal peak of solar irradiance. During the late autumn senscence period the photosynthetic capacity declined over a 2-week period, but as this is a time of low irradiance, the loss of potential photosynthesis was relatively small. The consequences of these developmental changes and differences in bud break dates for daily and seasonal leaf carbon balance were investigated through a simple light-response photosynthetic model. Seasonal changes in photosynthetic capacity would decrease annual carbon uptake per unit leaf area by about 23% compared to that potentially possible if leaves photosynthesised at peak rates throughout the growing season. This difference is likely to be up to 30% larger in years with late budburst and as low as 18% in years with early budburst.


Assuntos
Carbono/metabolismo , Periodicidade , Fotossíntese/fisiologia , Quercus/fisiologia , Clima , Monitoramento Ambiental , Estações do Ano
5.
Oecologia ; 125(3): 400-411, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28547335

RESUMO

Fluxes of CO2 and H2O vapour from dense stands of the C4 emergent macrophyte grass Echinochloa polystachya were measured by eddy covariance in both the low water (LW) and high water (HW, flooded) phases of the annual Amazon river cycle at Manaus, Brazil. Typical clear-sky midday CO2 uptake rates by the vegetation stand (including detritus, sediment or water surface) were 30 and 35 µmol CO2 (ground) m-2 s-1 in the LW and HW periods, respectively. A rectangular hyperbola model fitted the responses of "instantaneous" (20- or 30-min average) net CO2 exchange rates to incident photosynthetic photon flux densities (PFD) well. Stand evaporation rates were linearly related to PFD. The major difference in CO2 uptake rates between the two periods was the larger respiration flux during LW due to the CO2 efflux from sediment, roots and litter. Integrated 20- or 30-min fluxes were used to derive relationships between daily CO2 and H2O vapour fluxes and incident radiation. The daily CO2 fluxes were almost linearly related to incident radiation, but there was evidence of saturation at the highest daily radiation totals. Annual productivity estimated from the daily model in 1996-1997 agreed closely with that previously estimated for 1985-1986 from a leaf-scale photosynthetic model, but were some 15% less than those derived at that time from biomass harvests. Both CO2 uptake and water use efficiency were comparable with those found in fertilised maize fields in warm temperate conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...