Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 106: 105234, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970920

RESUMO

BACKGROUND: The most near-term clinical application of genome-wide association studies in lung cancer is a polygenic risk score (PRS). METHODS: A case-control dataset was generated consisting of 4002 lung cancer cases from the LORD project and 20,010 ethnically matched controls from CARTaGENE. A genome-wide PRS including >1.1 million genetic variants was derived and validated in UK Biobank (n = 5419 lung cancer cases). The predictive ability and diagnostic discrimination performance of the PRS was tested in LORD/CARTaGENE and benchmarked against previous PRSs from the literature. Stratified analyses were performed by smoking status and genetic risk groups defined as low (<20th percentile), intermediate (20-80th percentile) and high (>80th percentile) PRS. FINDINGS: The phenotypic variance explained and the effect size of the genome-wide PRS numerically outperformed previous PRSs. Individuals with high genetic risk had a 2-fold odds of lung cancer compared to low genetic risk. The PRS was an independent predictor of lung cancer beyond conventional clinical risk factors, but its diagnostic discrimination performance was incremental in an integrated risk model. Smoking increased the odds of lung cancer by 7.7-fold in low genetic risk and by 11.3-fold in high genetic risk. Smoking with high genetic risk was associated with a 17-fold increase in the odds of lung cancer compared to individuals who never smoked and with low genetic risk. INTERPRETATION: Individuals at low genetic risk are not protected against the smoking-related risk of lung cancer. The joint multiplicative effect of PRS and smoking increases the odds of lung cancer by nearly 20-fold. FUNDING: This work was supported by the CQDM and the IUCPQ Foundation owing to a generous donation from Mr. Normand Lord.

3.
Sci Adv ; 10(22): eadk9681, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820148

RESUMO

In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.


Assuntos
Ácidos e Sais Biliares , Colesterol , Homeostase , Animais , Colesterol/metabolismo , Ácidos e Sais Biliares/metabolismo , Camundongos , Jejum/metabolismo , Fígado/metabolismo , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais , Hepatócitos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
4.
Sci Rep ; 13(1): 17969, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863977

RESUMO

Skin aging is a multifactorial process influenced by internal and external factors. The contribution of different environmental factors has been well established individually in the last few years. On the one hand, man is rarely exposed to a single factor, and on the other hand, there is very little knowledge about how these extrinsic factors may interact with each other or even how the skin may react to chronic exposure. This study aimed to evaluate the effect on skin aging of a chronic co-exposure of tissue-engineered skin substitutes to cigarette smoke extract (CSE) and solar simulator light (SSL). Skin substitutes were reconstructed according to the self-assembly method and then exposed to CSE followed by irradiation with SSL simultaneously transmitting UVA1, visible light and infrared. When skin substitutes were chronically exposed to CSE and SSL, a significant decrease in procollagen I synthesis and the inhibition of Smad2 phosphorylation of the TGF-ß signaling pathway were observed. A 6.7-fold increase in MMP-1 activity was also observed when CSE was combined with SSL, resulting in a decrease in collagen III and collagen IV protein expression. The secretory profile resulting from the toxic synergy was investigated and several alterations were observed, notably an increase in the quantities of pro-inflammatory cytokines. The results also revealed the activation of the ERK1/2 (3.4-fold) and JNK (3.3-fold) pathways. Taken together, the results showed that a synergy between the two environmental factors could provoke premature skin aging.


Assuntos
Fumar Cigarros , Envelhecimento da Pele , Humanos , Masculino , Pele/metabolismo , Luz Solar/efeitos adversos , Colágeno/metabolismo
5.
J Neuromuscul Dis ; 10(6): 1041-1053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694373

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. In DM1 patients, skeletal muscle is severely impaired, even atrophied and patients experience a progressive decrease in maximum strength. Strength training for these individuals can improve their muscle function and mass, however, the biological processes involved in these improvements remain unknown. OBJECTIVE: This exploratory study aims at identifying the proteomic biomarkers and variables associated with the muscle proteome changes induced by training in DM1 individuals. METHODS: An ion library was developed from liquid chromatography-tandem mass spectrometry proteomic analyses of Vastus Lateralis muscle biopsies collected in 11 individuals with DM1 pre-and post-training. RESULTS: The proteomic analysis showed that the levels of 44 proteins were significantly modulated. A literature review (PubMed, UniProt, PANTHER, REACTOME) classified these proteins into biological sub-classes linked to training-induced response, including immunity, energy metabolism, apoptosis, insulin signaling, myogenesis and muscle contraction. Linear models identified key variables explaining the proteome modulation, including atrophy and hypertrophy factors. Finally, six proteins of interest involved in myogenesis, muscle contraction and insulin signaling were identified: calpain-3 (CAN3; Muscle development, positive regulation of satellite cell activation), 14-3-3 protein epsilon (1433E; Insulin/Insulin-like growth factor, PI3K/Akt signaling), myosin-binding protein H (MYBPH; Regulation of striated muscle contraction), four and a half LIM domains protein 3 (FHL3; Muscle organ development), filamin-C (FLNC; Muscle fiber development) and Cysteine and glycine-rich protein 3 (CSRP3). CONCLUSION: These findings may lead to the identification for DM1 individuals of novel muscle biomarkers for clinical improvement induced by rehabilitation, which could eventually be used in combination with a targeted pharmaceutical approach to improving muscle function, but further studies are needed to confirm those results.


Assuntos
Insulinas , Doenças Musculares , Distrofia Miotônica , Adulto , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/metabolismo , Proteômica , Músculo Esquelético/patologia , Biomarcadores/metabolismo , Insulinas/metabolismo
6.
Photochem Photobiol ; 99(5): 1258-1268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36537030

RESUMO

Solar radiation and cigarette smoke are two environmental risk factors known to affect skin integrity. Although the toxic effects of these factors on skin have been widely studied separately, few studies have focused on their interaction. The objective of this study was to evaluate and understand the synergistic harmful effects of cigarette smoke and solar rays on human primary keratinocytes. The keratinocytes were exposed to cigarette smoke extract (CSE) and then irradiated with a solar simulator light (SSL). The viability, as determined by measuring metabolic activity of skin cells, and the levels of global reactive oxygen species (ROS) were evaluated after exposure to CSE and SSL. The combination of 3% CSE with 29 kJ m-2 UVA caused a decrease of 81% in cell viability, while with 10% to 20% CSE, the cell viability was null. This phototoxicity was accompanied by an increase in singlet oxygen but a decrease in type I ROS when CSE and SSL were combined in vitro. Surprisingly, an increase in the CSE's total antioxidant capacity was also observed. These results suggest a synergy between the two environmental factors in their effect on skin cells, and more precisely a phototoxicity causing a drastic decrease in cell viability.

7.
Respir Res ; 23(1): 275, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209215

RESUMO

BACKGROUND: Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis, this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here, we aimed to further define the respective contributions of B and T cells in subacute experimental HP. METHODS: Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion, we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. RESULTS: Even though B cells are not sufficient to induce HP, they strongly potentiate CD4+ T cell-induced HP­associated neutrophilic inflammation in the airways. However, the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation, suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally, we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet, injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial, sometimes mild, depletion of B cells and T cells subsets. CONCLUSIONS: Although B cells are required for maximal inflammation in subacute experimental HP, partial reduction of B cells fails to reduce HP-associated inflammation by itself. However, co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge.


Assuntos
Alveolite Alérgica Extrínseca , Linfócitos T , Animais , Antígenos , Linfócitos B , Líquido da Lavagem Broncoalveolar , Proteínas de Homeodomínio , Inflamação/patologia , Pulmão/patologia , Camundongos
8.
Front Physiol ; 13: 949378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105289

RESUMO

Hypoxia is common in lung diseases and a potent stimulator of the long non-coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1). Herein, we investigated the impact of Malat1 on hypoxia-induced lung dysfunction in mice. Malat1-deficient mice and their wild-type littermates were tested after 8 days of normoxia or hypoxia (10% oxygen). Hypoxia decreased elastance of the lung by increasing lung volume and caused in vivo hyperresponsiveness to methacholine without altering the contraction of airway smooth muscle. Malat1 deficiency also modestly decreased lung elastance but only when tested at low lung volumes and without altering lung volume and airway smooth muscle contraction. The in vivo responsiveness to methacholine was also attenuated by Malat1 deficiency, at least when elastance, a readout sensitive to small airway closure, was used to assess the response. More impressively, in vivo hyperresponsiveness to methacholine caused by hypoxia was virtually absent in Malat1-deficient mice, especially when hysteresivity, a readout sensitive to small airway narrowing heterogeneity, was used to assess the response. Malat1 deficiency also increased the coefficient of oxygen extraction and decreased ventilation in conscious mice, suggesting improvements in gas exchange and in clinical signs of respiratory distress during natural breathing. Combined with a lower elastance at low lung volumes at baseline, as well as a decreased propensity for small airway closure and narrowing heterogeneity during a methacholine challenge, these findings represent compelling evidence suggesting that the lack of Malat1 protects the access to alveoli for air entering the lung.

9.
Front Pharmacol ; 13: 971238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160400

RESUMO

Rationale: Smoking status and smoking history remain poorly accounted for as variables that could affect the efficacy of new drugs being tested in chronic obstructive pulmonary disease (COPD) patients. As a proof of concept, we used a pre-clinical model of cigarette smoke (CS) exposure to compare the impact of treatment during active CS exposure or during the cessation period on the anti-inflammatory effects IL-1α signaling blockade. Methods: Mice were exposed to CS for 2 weeks, followed by a 1-week cessation, then acutely re-exposed for 2 days. Mice were treated with an anti-IL-1α antibody either during CS exposure or during cessation and inflammatory outcomes were assessed. Results: We found that mice re-exposed to CS displayed reduced neutrophil counts and cytokine levels in the bronchoalveolar lavage (BAL) compared to mice exposed only acutely. Moreover, we found that treatment with an anti-IL-1α antibody during the initial CS exposure delayed inflammatory processes and interfered with pulmonary adaptation, leading to rebound pulmonary neutrophilia, increased BAL cytokine secretion (CCL2) and upregulated Mmp12 expression. Conversely, administration of anti-IL-1α during cessation had the opposite effect, improving BAL neutrophilia, decreasing CCL2 levels and reducing Mmp12 expression. Discussion: These results suggest that pulmonary adaptation to CS exposure dampens inflammation and blocking IL-1α signaling during CS exposure delays the inflammatory response. More importantly, the same treatment administered during cessation hastens the return to pulmonary inflammatory homeostasis, strongly suggesting that smoking status and treatment timing should be considered when testing new biologics in COPD.

10.
Front Physiol ; 13: 873465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082219

RESUMO

Introduction: Quadriceps dysfunction is a common systemic manifestation of chronic obstructive pulmonary disease (COPD), for which treatment using resistance training is highly recommended. Even though training volume is suggested to be a key explanatory factor for intramuscular adaptation to resistance training in healthy older adults, knowledge is scarce on the role of progression of training volume for intramuscular adaptations in COPD. Methods: This study was a sub-analysis of a parallel-group randomized controlled trial. Thirteen patients with severe to very severe COPD (median 66 yrs, forced expiratory volume in 1 s 44% predicted) performed 8 weeks of low-load resistance training. In a post hoc analysis, they were divided into two groups according to their training volume progression. Those in whom training volume continued to increase after the first 4 weeks of training outlined the continued progression group (n = 9), while those with limited increase (<5%) or even reduction in training volume after the initial 4 weeks composed the discontinued progression group (n = 4). Fiber-type distribution and oxidative muscle protein levels, i.e., citrate synthase (CS), hydroxyacyl-coenzyme A dehydrogenase (HADH), mitochondrial transcription factor A (TfAM) as well as quadriceps endurance measures (total work from elastic band and isokinetic knee extension tests), were assessed before and after the intervention period. Results: The continued progression group sustained their training volume progression during weeks 5-8 compared to weeks 1-4 (median +25%), while the discontinued progression group did not (median -2%) (p = 0.007 between groups). Compared with baseline values, significant between-group differences in fiber type distribution and TfAM muscle protein levels (range ± 17-62%, p < 0.05) and in individual responses to change in Type I and Type IIa fiber type proportion, CS, HADH, and TfAM muscle protein levels outcomes (median 89 vs. 50%, p = 0.001) were seen in favor of the continued progression group. Moreover, only the continued progression group had a significant increase in HADH muscle protein levels (+24%, p = 0.004), elastic band (+56%, p = 0.004) and isokinetic (+7%, p = 0.004) quadriceps endurance, but the between-group differences did not reach statistical significance (range 14-29%, p = 0.330-1.000). Discussion: The novel findings of the current study were that patients with COPD who had a continued progression of training volume across the 8-weeks intervention had an increased proportion of Type I fibers, and TfAM muscle protein levels and decreased proportion of Type II fibers compared to those that did not continue to progress their training volume after the initial weeks. Additionally, HADH muscle protein levels and quadriceps endurance measurements only improved in the continued progression group, although no significant between-group differences were seen. These findings highlight the importance of continued progression of training volume during resistive training to counteract quadriceps dysfunction within the COPD population. Still, considering the small sample size and the post hoc nature of our analyses, these results should be interpreted cautiously, and further research is necessary.

12.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L37-L47, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638643

RESUMO

Treatment of the cigarette smoke-associated lung diseases, such as chronic obstructive pulmonary disease (COPD), has largely focused on broad-spectrum anti-inflammatory therapies. However, these therapies, such as high-dose inhaled corticosteroids, enhance patient susceptibility to lung infection and exacerbation. Our objective was to assess whether the cationic host defense peptide, human ß-defensin 2 (hBD-2), can simultaneously reduce pulmonary inflammation in cigarette smoke-exposed mice while maintaining immune competence during bacterial exacerbation. Mice were exposed to cigarette smoke acutely (4 days) or chronically (5 days/wk for 7 wk) and administered hBD-2 intranasally or by gavage. In a separate model of acute exacerbation, chronically exposed mice treated with hBD-2 were infected with nontypeable Haemophilus influenzae before euthanasia. In the acute exposure model, cigarette smoke-associated pulmonary neutrophilia was significantly blunted by both local and systemic hBD-2 administration. Similarly, chronically exposed mice administered hBD-2 therapeutically exhibited reduced pulmonary neutrophil infiltration and downregulated proinflammatory signaling in the lungs compared with vehicle-treated mice. Finally, in a model of acute bacterial exacerbation, hBD-2 administration effectively limited neutrophil infiltration in the lungs while markedly reducing pulmonary bacterial load. This study shows that hBD-2 treatment can significantly attenuate lung neutrophilia induced by cigarette smoke exposure while preserving immune competence and promoting an appropriate host-defense response to bacterial stimuli.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , beta-Defensinas , Animais , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumar , beta-Defensinas/farmacologia
13.
J Asthma Allergy ; 15: 691-701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615256

RESUMO

Purpose: Monoclonal antibodies targeting interleukin-5 (IL5) and its receptor (IL5R), used for severe asthma treatment, reduce eosinophils to almost complete depletion. Fractional exhaled nitric oxide (FeNO), a surrogate marker of eosinophilic airway inflammation, is expected to decrease after their initiation. Our center noticed increased FeNO levels in a few patients in whom anti-IL5/IL5R therapy was initiated. Limited data are available on the kinetics of T2 inflammation biomarkers after initiation of a biologic in that population. This study aims to identify if a subgroup of severe asthma patients experiences increased FeNO levels after initiation of anti-IL5/IL5R therapy and to describe their clinical characteristics. Patients and Methods: This is a retrospective case series of 5 patients on Benralizumab (4M:1F) and 8 on Mepolizumab (5M:3F) who showed a significant increase in FeNO (>20% AND >25 ppb) following initiation of an anti-IL5/IL5R treatment. Clinical data, expiratory flows, and inflammation were extracted from the patients' chart at initiation of treatment (T0), 3 months (T1) and 12 months (T2) post-treatment. Descriptive statistics were used. Results: In patients treated with Benralizumab, the increase in FeNO was observed between T0 and T1 (mean delta = 82 ± 72 ppb) with a subsequent decrease (N = 3). In most patients taking Mepolizumab (N = 6), the FeNO increase was observed between T1 and T2 (mean delta = 57 ± 35 ppb). Under treatment, no Benralizumab patient experienced asthma exacerbation while two on Mepolizumab did. All patients had a significant decrease in blood eosinophils. Conclusion: Although initiation of anti-IL5/IL5R may cause a transient rise in FeNO levels in a subgroup of patients, it does not appear to affect clinical outcomes. A compensatory mechanism involving other inflammatory pathways such as IL13 or IL4, both involved in FeNO production, could theoretically explain these findings. Further investigation is needed to elucidate the actual underlying mechanisms.

14.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058252

RESUMO

BACKGROUND: Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS: We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS: Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION: This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.


Assuntos
Fumar Cigarros , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Fumar Cigarros/efeitos adversos , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Nicotiana
15.
Physiol Rep ; 10(2): e15146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35075822

RESUMO

Vaping is increasingly popular among the young and adult population. Vaping liquids contained in electronic cigarettes (e-cigarettes) are mainly composed of propylene glycol and glycerol, to which nicotine and flavors are added. Among several biological processes, glycerol is a metabolic substrate used for lipid synthesis in fed state as well as glucose synthesis in fasting state. We aimed to investigate the effects of glycerol e-cigarette aerosol exposure on the aspects of glycerol and glucose homeostasis. Adult and young male and female mice were exposed to e-cigarette aerosols with glycerol as vaping liquid using an established whole-body exposure system. Mice were exposed acutely (single 2-h exposure) or chronically (2 h/day, 5 days/week for 9 weeks). Circulating glycerol and glucose levels were assessed and glycerol as well as glucose tolerance tests were performed. The liver was also investigated to assess changes in the histology, lipid content, inflammation, and stress markers. Lung functions were also assessed as well as hepatic mRNA expression of genes controlling the circadian rhythm. Acute exposure to glycerol aerosols generated by an e-cigarette increased circulating glycerol levels in female mice. Increased hepatic triglyceride and phosphatidylcholine concentrations were observed in female mice with no increase in circulating alanine aminotransferase or evidence of inflammation, fibrosis, or endoplasmic reticulum stress. Chronic exposure to glycerol e-cigarette aerosols mildly impacted glucose tolerance test in young female and male mice. Fasting glycerol, glucose, and insulin remained unchanged. Increased pulmonary resistance was observed in young male mice. Taken together, this study shows that the glycerol contained in vaping liquids can affect the liver as well as the aspects of glucose and glycerol homeostasis. Additional work is required to translate these observations to humans and determine the biological and potential pathological impacts of these findings.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Feminino , Glicerol/farmacologia , Homeostase , Fígado , Masculino , Camundongos , Vaping/efeitos adversos
16.
Mol Aspects Med ; 85: 101021, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34521557

RESUMO

Although there is still no consensus on the definition of Asthma-COPD Overlap (ACO), it is generally accepted that some patients with airway disease have features of both asthma and COPD. Just as its constituents, ACO consists of different phenotypes, possibly depending on the predominance of the underlying asthma or COPD-associated pathophysiological mechanisms. The clinical picture is influenced by the development of airway inflammatory processes either eosinophilic, neutrophilic or mixed, in addition to glandular changes leading to mucus hypersecretion and a variety of other airway structural changes. Although animal models have exposed how smoking-related changes can interact with those observed in asthma, much remains to be known about their interactions in humans and the additional modulating effects of environmental exposures. There is currently no solid evidence to establish the optimal treatment of ACO but it should understandably include an avoidance of environmental triggers such as smoking and relevant allergens. The recognition and targeting of "treatable traits" following phenotyping is a pragmatic approach to select the optimal pharmacological treatment for ACO, although an association of inhaled corticosteroids and bronchodilators is always required in these patients. This association acts both as an anti-inflammatory treatment for the asthma component and as a functional antagonist for the airway remodeling features. Research should be promoted on well phenotyped subgroups of ACO patients to determine their optimal management.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/complicações , Broncodilatadores/uso terapêutico , Humanos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/complicações
17.
Eur Respir Rev ; 30(162)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34911693

RESUMO

Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.


Assuntos
Pneumopatias , Surfactantes Pulmonares , Exposição Ambiental , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Pulmão
18.
Sci Rep ; 11(1): 7777, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833346

RESUMO

Due to frequent and often severe lung affections caused by COVID-19, murine models of acute respiratory distress syndrome (ARDS) are increasingly used in experimental lung research. The one induced by a single lipopolysaccharide (LPS) exposure is practical. However, whether it is preferable to administer LPS intranasally or intratracheally remains an open question. Herein, female C57Bl/6 J mice were exposed intranasally or intratracheally to one dose of either saline or 3 mg/kg of LPS. They were studied 24 h later. The groups treated with LPS, either intranasally or intratracheally, exhibited a pronounced neutrophilic inflammation, signs of lung tissue damage and protein extravasation into the alveoli, and mild lung dysfunction. The magnitude of the response was generally not different between groups exposed intranasally versus intratracheally. However, the variability of some the responses was smaller in the LPS-treated groups exposed intranasally versus intratracheally. Notably, the saline-treated mice exposed intratracheally demonstrated a mild neutrophilic inflammation and alterations of the airway epithelium. We conclude that an intranasal exposure is as effective as an intratracheal exposure in a murine model of ARDS induced by LPS. Additionally, the groups exposed intranasally demonstrated less variability in the responses to LPS and less complications associated with the sham procedure.


Assuntos
Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Administração Intranasal , Animais , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/análise , Síndrome do Desconforto Respiratório/patologia
19.
J Immunol ; 206(8): 1923-1931, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722877

RESUMO

Cigarette smoke exposure induces inflammation marked by rapid and sustained neutrophil infiltration, IL-1α, release and altered surfactant homeostasis. However, the extent to which neutrophils and IL-1α contribute to the maintenance of pulmonary surfactant homeostasis is not well understood. We sought to investigate whether neutrophils play a role in surfactant clearance as well as the effect of neutrophil depletion and IL-1α blockade on the response to cigarette smoke exposure. In vitro and in vivo administration of fluorescently labeled surfactant phosphatidylcholine was used to assess internalization of surfactant by lung neutrophils and macrophages during or following cigarette smoke exposure in mice. We also depleted neutrophils using anti-Ly-6G or anti-Gr-1 Abs, or we neutralized IL-1α using a blocking Ab to determine their respective roles in regulating surfactant homeostasis during cigarette smoke exposure. We observed that neutrophils actively internalize labeled surfactant both in vitro and in vivo and that IL-1α is required for smoke-induced elevation of surfactant protein (SP)-A and SP-D levels. Neutrophil depletion during cigarette smoke exposure led to a further increase in SP-A levels in the bronchoalveolar lavage and increased IL-1α, CCL2, GM-CSF, and G-CSF release. Finally, macrophage expression of Mmp12, a protease linked to emphysema, was increased in neutrophil-depleted groups and decreased following IL-1α blockade. Taken together, our results indicate that neutrophils and IL-1α signaling are actively involved in surfactant homeostasis and that the absence of neutrophils in the lungs during cigarette smoke exposure leads to an IL-1α-dependent exacerbation of the inflammatory response.


Assuntos
Fumar Cigarros/efeitos adversos , Inflamação/imunologia , Interleucina-1alfa/metabolismo , Neutrófilos/imunologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Anticorpos Bloqueadores/metabolismo , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais , Regulação para Cima
20.
Chest ; 159(5): 1821-1832, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33316237

RESUMO

BACKGROUND: Training volume is paramount in the magnitude of physiological adaptations following resistance training. However, patients with severe COPD are limited by dyspnea during traditional two-limb low-load/high-repetition resistance training (LLHR-RT), resulting in suboptimal training volumes. During a single exercise session, single-limb LLHR-RT decreases the ventilatory load and enables higher localized training volumes compared with two-limb LLHR-RT. RESEARCH QUESTION: Does single-limb LLHR-RT lead to more profound effects compared with two-limb LLHR-RT on exercise capacity (6-min walk distance [6MWD]), health status, muscle function, and limb adaptations in patients with severe COPD? STUDY DESIGN AND METHODS: Thirty-three patients (mean age 66 ± 7 years; FEV1 39 ± 10% predicted) were randomized to 8 weeks of single- or two-limb LLHR-RT. Exercise capacity (6MWD), health status, and muscle function were compared between groups. Quadriceps muscle biopsy specimens were collected to examine physiological responses. RESULTS: Single-limb LLHR-RT did not further enhance 6MWD compared with two-limb LLHR-RT (difference, 14 [-12 to 39 m]. However, 73% in the single-limb group exceeded the known minimal clinically important difference of 30 m compared with 25% in the two-limb group (P = .02). Health status and muscle function improved to a similar extent in both groups. During training, single-limb LLHR-RT resulted in a clinically relevant reduction in dyspnea during training compared with two-limb LLHR-RT (-1.75; P = .01), but training volume was not significantly increased (23%; P = .179). Quadriceps muscle citrate synthase activity (19%; P = .03), hydroxyacyl-coenzyme A dehydrogenase protein levels (32%; P < .01), and capillary-to-fiber ratio (41%; P < .01) were increased compared with baseline after pooling muscle biopsy data from all participants. INTERPRETATION: Single-limb LLHR-RT did not further increase mean 6MWD compared with two-limb LLHR-RT, but it reduced exertional dyspnea and enabled more people to reach clinically relevant improvements in 6MWD. Independent of execution strategy, LLHR-RT improved exercise capacity, health status, muscle endurance, and enabled several physiological muscle adaptations, reducing the negative consequences of limb muscle dysfunction in COPD. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT02283580; URL: www.clinicaltrials.gov.


Assuntos
Adaptação Fisiológica , Tolerância ao Exercício , Extremidades/fisiologia , Nível de Saúde , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/reabilitação , Treinamento Resistido/métodos , Idoso , Biópsia por Agulha , Feminino , Humanos , Análise de Intenção de Tratamento , Masculino , Músculo Esquelético/fisiologia , Estudos Prospectivos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...