Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666382

RESUMO

BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.

2.
J Mol Cell Cardiol ; 187: 90-100, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331557

RESUMO

Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Humanos , Diferenciação Celular , Miocárdio , Miócitos Cardíacos/transplante , Insuficiência Cardíaca/terapia
3.
Cell Rep Methods ; 3(12): 100666, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113855

RESUMO

Three-dimensional (3D) cultures are known to more closely mimic in vivo conditions compared with 2D cultures. Cardiac spheroids (CSs) and organoids (COs) are useful for 3D tissue engineering and are advantageous for their simplicity and mass production for regenerative therapy and drug discovery. Herein, we describe a large-scale method for producing homogeneous human induced pluripotent stem cell (hiPSC)-derived CSs (hiPSC-CSs) and COs without scaffolds using a porous 3D microwell substratum with a suction system. Our method has many advantages, such as increased efficiency and improved functionality, homogeneity, and sphericity of hiPSC-CSs. Moreover, we have developed a substratum on a clinically relevant large scale for regenerative therapy and have succeeded in producing approximately 40,000 hiPSC-CSs with high sphericity at once. Furthermore, we efficiently produced a fused CO model consisting of hiPSC-derived atrial and ventricular cardiomyocytes localized on opposite sides of one organoid. This method will facilitate progress toward hiPSC-based clinical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Organoides , Engenharia Tecidual , Miócitos Cardíacos , Átrios do Coração
4.
Stem Cell Reports ; 18(10): 1925-1939, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738969

RESUMO

Monitoring cardiac differentiation and maturation from human pluripotent stem cells (hPSCs) and detecting residual undifferentiated hPSCs are indispensable for the development of cardiac regenerative therapy. MicroRNA (miRNA) is secreted from cells into the extracellular space, and its role as a biomarker is attracting attention. Here, we performed an miRNA array analysis of supernatants during the process of cardiac differentiation and maturation from hPSCs. We demonstrated that the quantification of extracellular miR-489-3p and miR-1/133a-3p levels enabled the monitoring of mesoderm and cardiac differentiation, respectively, even in clinical-grade mass culture systems. Moreover, extracellular let-7c-5p levels showed the greatest increase with cardiac maturation during long-term culture. We also verified that residual undifferentiated hPSCs in hPSC-derived cardiomyocytes (hPSC-CMs) were detectable by measuring miR-302b-3p expression, with a detection sensitivity of 0.01%. Collectively, we demonstrate that our method of seamlessly monitoring specific miRNAs secreted into the supernatant is non-destructive and effective for the quality evaluation of hPSC-CMs.


Assuntos
MicroRNAs , Células-Tronco Pluripotentes , Humanos , MicroRNAs/genética , Diferenciação Celular/genética , Antiarrítmicos , Transporte Biológico , Cardiotônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...