Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(11): 4914-4922, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36888566

RESUMO

The space of advanced therapeutic modalities is currently evolving in rapid pace necessitating continuous improvement of analytical quality control methods. In order to evaluate the identity of nucleic acid species in gene therapy products, we propose a capillary electrophoresis-based gel free hybridization assay in which fluorescently labeled peptide nucleic acids (PNAs) are applied as affinity probes. PNAs are engineered organic polymers that share the base pairing properties with DNA and RNA but have an uncharged peptide backbone. In the present study, we conduct various proof-of-concept studies to identify the potential of PNA probes for advanced analytical characterization of novel therapeutic modalities like oligonucleotides, plasmids, mRNA, and DNA released by recombinant adeno-associated virus. For single-stranded nucleic acids up to 1000 nucleotides, the method is an excellent choice that proved to be highly specific by detecting DNA traces in complex samples, while having a limit of quantification in the picomolar range when multiple probes are used. For double-stranded samples, only fragments that are similar in size to the probe could be quantified. This limitation can be circumvented when target DNA is digested and multiple probes are used opening an alternative to quantitative PCR.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Hibridização de Ácido Nucleico , DNA/genética , DNA/química , RNA/química , Peptídeos , Eletroforese Capilar/métodos , RNA Mensageiro
2.
Anal Chem ; 95(8): 4059-4066, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36800441

RESUMO

Characterization of charge heterogeneity is an essential pillar for pharmaceutical development and quality control of therapeutic monoclonal antibodies (mAbs). The highly selective and commonly applied capillary zone electrophoresis (CZE) method containing high amounts of ε-aminocaproic acid (EACA) provides a detailed and robust charge heterogeneity profile of intact mAb variants. Nevertheless, the exact location of protein modifications within these charge profiles remains ambiguous. Electrospray ionization mass spectrometry (ESI-MS) is a promising tool for this purpose; however, EACA is incompatible with electrospray. In this context, we present a two-dimensional CZE-CZE-MS system to combine efficient charge variant separation of intact mAbs with subsequent peptide analysis after in-capillary digestion of selected charge variants. The first dimension is based on a generic CZE(EACA) method in a fused silica capillary. In the second dimension, a neutral-coated capillary is used for in-capillary reduction and digestion with Tris(2-carboxyethyl)phosphine (TCEP) and pepsin, followed by CZE separation and MS/MS-characterization of the resulting peptides. The setup is demonstrated using stressed and nonstressed mAbs where peaks of basic, main, and acidic variants were transferred in a heart-cut fashion, digested, and characterized on the peptide level. Sequence coverages of more than 90% were obtained for heavy chain (HC) and light chain (LC) for four different mAbs, including low-abundance variants (<2% of the main peak). Frequently observed modifications (deamidation, oxidation, etc.) could be detected and localized. This study demonstrates a proof-of-concept for identification and localization of protein modifications from CZE charge heterogeneity profiles and, in this way, is expected to support the development and quality control testing of protein pharmaceuticals.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/química , Peptídeos , Eletroforese Capilar/métodos , Digestão
3.
Electrophoresis ; 44(5-6): 540-548, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36148605

RESUMO

Imaged capillary isoelectric focusing (iCIEF) has emerged as an important technique for therapeutic monoclonal antibody (mAb) charge heterogeneity analysis in the biopharmaceutical context, providing imaged detection and quantitation by UV without a mobilization step. Besides quantitation, the characterization of separated charge variants ideally directly by online electrospray ionization-mass spectrometry (ESI-MS) is crucial to ensure product quality, safety, and efficacy. Straightforward direct iCIEF-MS coupling combining high separation efficiency and quantitative results of iCIEF with the characterization power of MS enables deep characterization of mAb charge variants. A short technical setup and optimized methodical parameters (30 nl/min mobilization rate, 2%-4% ampholyte concentration, 0.5-2 mg/ml sample concentration) allow successful mAb charge variant peak assignment from iCIEF to MS. Despite a loss of separation resolution during the transfer, separated intact mAb charge variants, including deamidation as well as major and minor glycoforms even from low abundant charge variants, could be characterized by online ESI-MS with high precision. The presented setup provides a large potential for mAb charge heterogeneity characterization in biopharmaceutical applications.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Anticorpos Monoclonais/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Focalização Isoelétrica/métodos , Focalização Isoelétrica Capilar
4.
J Pharm Biomed Anal ; 201: 114089, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940498

RESUMO

Size heterogeneity analysis by capillary sieving electrophoresis utilizing sodium dodecyl sulfate (CE(SDS)) with optical detection is a major method applied for release and stability testing of monoclonal antibodies (mAbs) in biopharmaceutical applications. Identification of mAb-fragments and impurities observed with CE(SDS) is of outstanding importance for the assessment of critical quality attributes and development of the analytical control system. Mass spectrometric (MS) detection is a powerful tool for protein identification and characterization. Unfortunately, CE(SDS) is incompatible with online MS-hyphenation due to strong ionization suppression of SDS and other separation buffer components. Here, we present a comprehensive platform for full characterization of individual CE(SDS)-separated peaks by CE(SDS)-capillary zone electrophoresis-top-down-MS. The peak of interest is transferred from the first to the second dimension via an 8-port valve to remove MS-incompatible components. Full characterization of mAb byproducts is performed by intact mass determination and fragmentation by electron transfer dissociation, higher-energy collisional dissociation, and ultraviolet photodissociation. This enables online determination of intact mass as well as sequence verification of individual CE(SDS)-separated peaks simultaneously. A more substantiated characterization of unknown CE(SDS) peaks by exact localization of modifications without prior digestion is facilitated. High sensitivity is demonstrated by successful mass and sequence verification of low abundant, unknown CE(SDS) peaks from two stressed mAb samples. Good fragmentation coverages are obtained by MS2, enabling unequivocal identification of these mAb-fragments. Also, the differentiation of reduced/non-reduced intra-protein disulfide bonds is demonstrated. In summary, a reliable and unambiguous online MS2 identification of unknown compounds of low-abundant individual CE(SDS) peaks is enabled.


Assuntos
Anticorpos Monoclonais , Eletroforese Capilar , Fragmentos de Imunoglobulinas , Espectrometria de Massas , Dodecilsulfato de Sódio
5.
Electrophoresis ; 42(11): 1209-1216, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651405

RESUMO

Oxidative damage of biopharmaceuticals during manufacturing and storage is a key concern throughout pharmaceutical development. However, few simple and robust analytical methods are available for the determination of oxidation sites. Here, the potential of affinity capillary electrophoresis (ACE) in the separation of proteins with oxidized methionine (Met) residues is shown. Silver(I) and gold(I) ions have the attribute to selectively form complexes with thioethers over sulfoxides. The addition of these ions to the BGE leads to a selective complexation of Met residues and, thus, to a change of charge allowing separation of species according to the different oxidation states of Met. The mechanisms of these interactions are discussed and binding constants for peptides containing Met with silver(I) are calculated. Additionally, the proposed method can be used as an indicator of oxidative stress in large proteins. The presented technique is easily accessible, economical, and has rapid analysis times, adding new approaches to the analytical toolbox of Met sulfoxide detection.


Assuntos
Ouro , Metionina , Proteínas , Prata , Cátions , Eletroforese Capilar , Metionina/química , Oxirredução , Proteínas/química
6.
Electrophoresis ; 42(4): 374-380, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32762042

RESUMO

Capillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments. However, an improvement regarding system stability and handling of the approach was desired. Here, we introduce a novel 8-port valve in conjunction with an optimized decomplexation strategy. The valve contains four sample loops with increased distances between the separation dimensions. Thus, successively coinjection of solvent and cationic surfactant without any additional detector in the second dimension is enabled, simplifying the decomplexation strategy. Removal efficiency was optimized by testing different volumes of solvents as presample and cationic surfactant as postsample zone. 2D measurements of the light and heavy chain of the reduced NIST mAb with the 8-port valve and the optimized decomplexation strategy demonstrates the increased robustness of the system. The presented novel set-up is a step toward routine application of CE(SDS)-CZE-MS for impurity characterization of proteins in the biopharmaceutical field.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Nanotecnologia/instrumentação , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Eletroforese Capilar/instrumentação , Desenho de Equipamento , Cadeias Pesadas de Imunoglobulinas/análise , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/análise , Cadeias Leves de Imunoglobulina/química , Espectrometria de Massas/instrumentação
7.
Anal Bioanal Chem ; 411(27): 7197-7206, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31616969

RESUMO

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is the fundamental technique for protein separation by size. Applying this technology in capillary format, gaining high separation efficiency in a more automated way, is a key technology for size separation of proteins in the biopharmaceutical industry. However, unequivocal identification by online mass spectrometry (MS) is impossible so far, due to strong interference in the electrospray process by SDS and other components of the SDS-MW separation gel buffer. Here, a heart-cut two-dimensional electrophoretic separation system applying an electrically isolated valve with an internal loop of 20 nL is presented. The peak of interest in the CE (SDS) separation is transferred to the CZE-MS, where electrospray-interfering substances of the SDS-MW gel are separated prior to online electrospray ionization mass spectrometry. An online SDS removal strategy for decomplexing the protein-SDS complex is implemented in the second dimension, consisting of the co-injection of organic solvent and cationic surfactant. This online CE (SDS)-CZE-MS system allows MS characterization of proteoforms separated in generic CE (SDS), gaining additional separation in the CZE and detailed MS information. In general, the system can be applied to all kinds of proteins separated by CE (SDS). Here, we present results of the CE (SDS)-CZE-MS system on the analysis of several biopharmaceutically relevant antibody impurities and fragments. Additionally, the versatile application spectrum of the system is demonstrated by the analysis of extracted proteins from soybean flour. The online hyphenation of CE (SDS) resolving power and MS identification capabilities will be a powerful tool for protein and mAb characterization. Graphical abstract Two-dimensional capillary electrophoresis system hyphenated with mass spectrometry for the characterization of CE (SDS)-separated proteins. As first dimension, a generic and high MS-interfering CE (SDS) separation is performed for size separation. After heart-cut transfer of the unknown CE (SDS) protein peak, via a four-port nanoliter valve to a volatile electrolyte system as second dimension, interference-free mass spectrometric data of separated mAb fragments and soybean proteins are obtained.


Assuntos
Eletroforese Capilar/instrumentação , Glycine max/química , Proteínas de Soja/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Eletroforese em Gel de Poliacrilamida , Desenho de Equipamento , Dodecilsulfato de Sódio/química , Proteínas de Soja/análise
8.
Electrophoresis ; 40(22): 3014-3022, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31560789

RESUMO

Charge heterogeneity profiling is important for the quality control (QC) of biopharmaceuticals. Because of the increasing complexity of these therapeutic entities [1], the development of alternative analytical techniques is needed. In this work, flow-through partial-filling affinity capillary electrophoresis (FTPFACE) has been established as a method for the analysis of a mixture of two similar monoclonal antibodies (mAbs). The addition of a specific ligand results in the complexation of one mAb in the co-formulation, thus changing its migration time in the electric field. This allows the characterization of the charged variants of the non-shifted mAb without interferences. Adsorption of proteins to the inner capillary wall has been circumvented by rinsing with guanidine hydrochloride before each injection. The presented FTPFACE approach requires only very small amounts of ligands and provides complete comparability with a standard CZE of a single mAb.


Assuntos
Anticorpos Monoclonais/análise , Produtos Biológicos/análise , Eletroforese Capilar/métodos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação
9.
Electrophoresis ; 38(24): 3136-3146, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28887890

RESUMO

CZE is a well-established technique for charge heterogeneity testing of biopharmaceuticals. It is based on the differences between the ratios of net charge and hydrodynamic radius. In an extensive intercompany study, it was recently shown that CZE is very robust and can be easily implemented in labs that did not perform it before. However, individual characteristics of some examined proteins resulted in suboptimal resolution. Therefore, enhanced method development principles were applied here to investigate possibilities for further method optimization. For this purpose, a high number of different method parameters was evaluated with the aim to improve CZE separation. For the relevant parameters, design of experiments (DoE) models were generated and optimized in several ways for different sets of responses like resolution, peak width and number of peaks. In spite of product specific DoE optimization it was found that the resulting combination of optimized parameters did result in significant improvement of separation for 13 out of 16 different antibodies and other molecule formats. These results clearly demonstrate generic applicability of the optimized CZE method. Adaptation to individual molecular properties may sometimes still be required in order to achieve optimal separation but the set screws discussed in this study [mainly pH, identity of the polymer additive (HPC versus HPMC) and the concentrations of additives like acetonitrile, butanolamine and TETA] are expected to significantly reduce the effort for specific optimization.


Assuntos
Anticorpos Monoclonais/análise , Eletroforese Capilar/métodos , Eletroforese Capilar/normas , Projetos de Pesquisa
10.
Anal Bioanal Chem ; 409(26): 6057-6067, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28801824

RESUMO

Capillary zone electrophoresis (CZE) is a powerful tool that is progressively being applied for the separation of monoclonal antibody (mAb) charge variants. Mass spectrometry (MS) is the desired detection method concerning identification of mAb variants. In biopharmaceutical applications, there exist optimized and validated electrolyte systems for mAb variant quantification. However, these electrolytes interfere greatly with the electrospray ionization (ESI) process. Here, a heart-cut CZE-CZE-MS setup with an implemented mechanical four-port valve interface was developed that used a generic ε-aminocaproic acid based background electrolyte in the first dimension and acetic acid in the second dimension. Interference-free, highly precise mass data (deviation less than 1 Da) of charge variants of trastuzumab, acting as model mAb system, were achieved. The mass accuracy obtained (low parts per million range) is discussed regarding both measured and calculated masses. Deamidation was detected for the intact model antibody, and related mass differences were significantly confirmed on the deglycosylated level. The CZE-CZE-MS setup is expected to be applicable to a variety of antibodies and electrolyte systems. Thus, it has the potential to become a compelling tool for MS characterization of antibody variants separated in ESI-interfering electrolytes. Graphical Abstract Two-dimensional capillary zone electrophoresis mass spectrometry for the characterization of intact monoclonal antibody (mAb) charge variants. A generic, but highly electrospray-interfering electrolyte system was used as first dimension for mAb charge variant separation and coupled to a volatile electrolyte system as second dimension via a four-port nanoliter valve. In this way, interference-free and precise mass spectrometric data of separated mAb charge variants, including deamidation products, were obtained.


Assuntos
Antineoplásicos Imunológicos/química , Eletroforese Capilar/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Trastuzumab/química , Amidas/análise , Ácido Aminocaproico/química , Anticorpos Monoclonais/química , Eletrólitos/química , Eletroforese Capilar/instrumentação , Desenho de Equipamento , Glicosilação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Eletricidade Estática
11.
Electrophoresis ; 38(7): 1044-1052, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28008632

RESUMO

Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE-MS method for the analysis of mAbs is presented analyzing SDS-complexed samples. To obtain narrow and intensive peaks of SDS-treated antibodies, an in-capillary strategy was developed based on the co-injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in-capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS-containing matrices, including the sieving matrix used in a standard CE-SDS method and gel-buffers applied in SDS-PAGE methods. The developed CE-MS approaches enable fast and reproducible characterization of SDS-complexed antibodies.


Assuntos
Anticorpos Monoclonais/análise , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Dodecilsulfato de Sódio/isolamento & purificação , Reprodutibilidade dos Testes , Dodecilsulfato de Sódio/química
12.
Electrophoresis ; 38(6): 769-785, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27982442

RESUMO

During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso-Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by disulfide bond cleavage. Certain modifications such as disulfide induced aggregation and heterodimers from different antibodies are generally regarded critical with respect to safety. However, the detection of some modifications in endogenous antibodies isolated from human blood and the possibility of in vivo repair mechanisms may reduce some safety concerns.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Imunoglobulina G/imunologia , Humanos , Conformação Proteica
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 983-984: 101-10, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25637812

RESUMO

Within pharmaceutical industry charge heterogeneity testing of biopharmaceuticals has to be reproducible and fast. It should pass method validation according to ICH Q2. Classical approaches for the analysis of the charge heterogeneity of biopharmaceuticals are ion exchange chromatography (IEC) and isoelectric focusing (IEF). As an alternative approach, also capillary zone electrophoresis (CZE) was expected to allow reliable charge heterogeneity profiling by separation according to the analyte's net charge and hydrodynamic radius. Aim of this study was to assess if CZE possesses all of the required features. Therefore, beside lab internal validation of this method also an international cross company study was organized. It was shown that CZE is applicable across a broad pI range between 7.4 and 9.5. The coefficient of correlation was above 0.99 which demonstrated linearity. Precision by repeatability was around 1% (maximum relative standard deviation per level) and accuracy by recovery was around 100% (mean recovery per level). Accuracy was further verified by direct comparison of IEC, IEF and CZE, which in this case showed comparable %CPA results for all three methods. However, best resolution for the investigated MAb was obtained with CZE. In dependence on sample concentration the detection limit was between 1 and 3%. Within the intercompany study for CZE the same stressed and non-stressed samples were analyzed in each of the 11 participating labs. The finally obtained dataset contained more than 1000 separations which provided an extended dataset for further statistical evaluation. Among the different labs no significant differences between the peak profiles were observed. Mean driver for dropouts in quantitative evaluation was linked to the performance of some participating labs while the impact of the method performance was negligible. In comparison to a 50cm capillary there was a slightly better separation of impurities and drug substance related compounds with a 30cm capillary which demonstrates that an increased stability indicating potential can be combined with the increased separation velocity and high throughput capability of a shorter capillary. Separation can be performed in as little as approx. 3min allowing high throughput applications. The intercompany study delivered precise results without explicit training of the participating labs in the method prior to the study (standard deviations in the range of 1%). It was demonstrated that CZE is an alternative platform technology for the charge heterogeneity testing of antibodies in the pharmaceutical industry.


Assuntos
Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Eletroforese Capilar/métodos , Cromatografia por Troca Iônica , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Reprodutibilidade dos Testes
14.
PLoS One ; 7(1): e30295, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272329

RESUMO

The degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101) in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393) in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies. In order to reduce the time for simultaneous identification and functional evaluation of potential asparagine deamidation and aspartate isomerization sites, a test system employing accelerated temperature conditions and proteolytic peptide mapping combined with quantitative UPLC-MS was developed. This method occupies the formulation buffer system histidine/HCl (20 mM; pH 6.0) for denaturation/reduction/digestion and eliminates the alkylation step. The achieved degree of asparagine deamidation and aspartate isomerization was adequate to identify the functional consequence by binding studies. In summary, the here presented approach greatly facilitates the evaluation of fermentation, purification, formulation, and storage conditions on antibody asparagine deamidation and aspartate isomerization by monitoring susceptible marker peptides located in the complementary-determining regions of recombinant antibodies.


Assuntos
Anticorpos/metabolismo , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Amidas/química , Amidas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/genética , Asparagina/química , Ácido Aspártico/química , Células CHO , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Cricetinae , Cricetulus , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Isomerismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Temperatura
15.
Arch Microbiol ; 182(6): 458-66, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15480576

RESUMO

faoA, the gene of the dye-linked NAD(P)-independent quinone-containing formaldehyde dehydrogenase of methylamine-grown Hyphomicrobium zavarzinii strain ZV 580 was sequenced and analyzed together with an apparent promoter region and adjoining genes in a 7.2-kb fragment of hyphomicrobial DNA. The formaldehyde dehydrogenase, identified as a periplasmic enzyme by its signal sequence, is distantly related to the soluble pyrroloquinoline-quinone-dependent glucose dehydrogenase of Acinetobacter calcoaceticus and to other predicted glucose dehydrogenase sequences. The promoter region, containing about 400 nucleotides upstream of faoA, comprised potential binding sites identical or highly similar to known consensus sequences of the sigma factors sigma(70) (housekeeping), sigma(H) (heat shock), sigma(F) (flagellar) and sigma(N) (nitrogen). The complex regulation of the transcription of faoA, which is suggested by this setting and emphasized by a possible heat-shock promoter, supports a hypothesis proposing an auxiliary role of the enzyme in lowering detrimental elevated concentrations of formaldehyde, which might arise in the course of stress or regulatory transitions disturbing balanced C(1) metabolism.


Assuntos
Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Hyphomicrobium/enzimologia , Acinetobacter calcoaceticus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Passeio de Cromossomo , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Glucose 1-Desidrogenase/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Proteomics ; 3(11): 2208-20, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14595820

RESUMO

The function of a protein is modulated by its abundance and its degree of specific post-translational modifications such as phosphorylation, glycosylation or truncation. Consequently, changes of protein concentration and the extent of their post-translational modifications has a great influence on the activity of intracellular substrate degradation processes, on the activity of intracellular biosynthetic pathways, on the cell cycle or on the function of a single cell in a whole organism. Defects in this area lead to diseases like cancer or neurodegeneration. Therefore, it is a challenge to quantify changes within the proteome in the diseased state or between developmental stages and to use the results obtained for the maximization of product yields in biotechnology or for the development of new drug targets to fight against diseases. In order to determine the intracellular concentration of a protein it is necessary to spike the cell sample with the same protein in a pure form. If the concentration changes of many proteins have to be determined, it takes a long time to obtain all these proteins in a pure form. Therefore, most approaches in this field are restricted to the determination of protein abundance ratios between two states such as diseased or healthy tissues. In this case the proteins in the sample of state A function as an internal standard for the proteins in the sample of state B and vice versa. The most common techniques in this field are the comparison of two-dimensional gel spot intensities after staining or the integration of mass spectrometric peak intensities after stable isotope labelling with (13)C, (15)N, (18)O or deuterium. The results, advantages and drawbacks of these approaches are discussed. Stable isotope labelling in combination with mass spectrometry is more accurate than the comparison of spot intensities and has the potential for the investigation of highly complex tissue samples.


Assuntos
Fosforilação , Proteínas/química , Animais , Eletroforese em Gel Bidimensional , Humanos , Marcação por Isótopo , Espectrometria de Massas , Proteínas/análise , Proteoma/análise , Proteoma/química
17.
Metab Eng ; 4(4): 295-305, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12646324

RESUMO

Corynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared. After leucine limitation only the strain with a feedback-resistant aspartate kinase began to excrete lysine into the culture medium. Concomitantly, the intracellular NADPH to NADP concentration ratio increased from 2 to 4 in the non-producing strain, whereas it remained constant at about 1.2 in the lysine-producing strain. From these data the in'vivo flux through the pentose phosphate pathway was calculated. These results were used to approximate the total NADPH regeneration by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, which agreed fairly well with the calculated demands for biomass formation and lysine biosynthesis. The analysis allowed to conclude that NADPH regeneration in the pentose phosphate pathway is essential for lysine biosynthesis in C. glutamicum.


Assuntos
Corynebacterium/crescimento & desenvolvimento , Corynebacterium/metabolismo , Leucina/biossíntese , Via de Pentose Fosfato/fisiologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Corynebacterium/classificação , Corynebacterium/genética , Ativação Enzimática , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Isocitrato Desidrogenase/metabolismo , Leucina/genética , NADP/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...