Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(2): 1388-1395, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38176024

RESUMO

Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.


Assuntos
Biotina , Fluoretos , Compostos de Enxofre , Espectrometria de Massas em Tandem , Biotina/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo
2.
J Med Chem ; 66(4): 2789-2803, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36735827

RESUMO

Human carbonic anhydrase II (hCAII) is a metalloenzyme essential to critical physiological processes in the body. hCA inhibitors are used clinically for the treatment of indications ranging from glaucoma to epilepsy. Targeted protein degraders have emerged as a promising means of inducing the degradation of disease-implicated proteins by using the endogenous quality control mechanisms of a cell. Here, a series of heterobifunctional degrader candidates targeting hCAII were developed from a simple aryl sulfonamide fragment. Degrader candidates were functionalized to produce either cereblon E3 ubiquitin ligase (CRBN) recruiting proteolysis targeting chimeras (PROTACs) or adamantyl-based hydrophobic tags (HyTs). Screens in HEK293 cells identified two PROTAC small-molecule degraders of hCA. Optimization of linker length and composition yielded a degrader with sub-nanomolar potency and sustained depletion of hCAII over prolonged treatments. Mechanistic studies suggest that this optimized degrader depletes hCAII through the same mechanism as previously reported CRBN-recruiting heterobifunctional degraders.


Assuntos
Anidrase Carbônica II , Ubiquitina-Proteína Ligases , Humanos , Proteólise , Anidrase Carbônica II/metabolismo , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo
3.
Cytokine ; 158: 155996, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988458

RESUMO

Colony-stimulating factor 2 (CSF2) is a potent cytokine that stimulates myeloid cells, such as dendritic cells and macrophages. We have been analyzing the roles of microglia in retinal degeneration through the modulation of inflammation in the eye, and examined the roles of CSF2 in this process. Both subunits of the CSF2 receptor are expressed in microglia, but no evidence suggesting the involvement of CSF2 in inflammation in the degenerating eye has been reported. We found that Csf2 transcripts were induced in the early phase of in vitro mouse adult retina culture, used as degeneration models, suggesting that CSF2 induction is one of the earliest events occurring in the pathology of retinal degeneration. The administration of CSF2 into the retina after systemic NaIO3 treatment increased the number of microglia. To examine the roles of CSF2 in retinal inflammation, we overexpressed CSF2 in retinal explants. Induction of CSF2 activated microglia and Müller glia, and the layer structure of the retina was severely perturbed. CC motif chemokine ligand 2 (Ccl2) and C-X-C motif chemokine ligand 10 (Cxcl10), both of which are expressed in activated microglia, were strongly induced by the expression of CSF2 in the retina. The addition of CSF2 to primary retinal microglia and the microglial cell lines MG5 and BV2 showed statistically significant increase in Ccl2 and Il1b transcripts. Furthermore, CSF2 induced proliferation, migration, and phagocytosis in MG5 and/or BV2. The effects of CSF2 on microglia were mild, suggesting that CSF2 induced strong inflammation in the context of the retinal environment.


Assuntos
Degeneração Retiniana , Animais , Quimiocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Inflamação/metabolismo , Ligantes , Camundongos , Microglia/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
4.
Invest Ophthalmol Vis Sci ; 61(13): 34, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33231622

RESUMO

Purpose: The role of activated retinal microglia in driving retinal degeneration has been implicated in a number of in vivo disease models. Here, we investigated the primary consequences of microglial activation by the specific expression of constitutively active Ras in microglia in a transgenic mouse model before the onset of any degenerative changes in the retina. Methods: The double transgenic lines CAG-LSL-RasV12-IRES-EGFP; Cx3cr1CreER/+ (Cx3cr1-RasV12 mice) and CAG-LSL-EGFP; Cx3cr1CreER_+ (control mice) were generated. The expression of RasV12 was induced in microglia by tamoxifen administration, and the retinas were examined by immunohistochemistry of frozen sections, RT-qPCR, and live imaging. Results: RasV12 expression in retinal microglial cells promoted cell proliferation, cytokine expression, and phagocytosis. RasV12-expressing microglia migrated toward the inner and outer layers of the retina. Examination of glial fibrillary acidic protein (GFAP) expression revealed activation of Müller glia in the retina. We also observed loss of the photoreceptors in the outer nuclear layer in close proximity to microglial cells. However, no significant neurodegeneration was detected in the inner nuclear layer (INL) or ganglion cell layer (GCL). The morphology of RasV12-expressing microglia in the GCL and INL retained more ramified features compared with the predominantly-ameboid morphology found in outer retinal microglia. Conclusions: The expression of RasV12 is sufficient to activate microglia and lead to photoreceptor degeneration. Neurons in the inner side of the retina were not damaged by the RasV12-activated microglia, suggesting that microenvironment cues may modulate the microglial phenotypic features and effects of microglial activation.


Assuntos
Expressão Gênica/fisiologia , Microglia/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/metabolismo , Retinite/metabolismo , Proteínas ras/genética , Animais , Encéfalo/metabolismo , Movimento Celular , Proliferação de Células , Antagonistas de Estrogênios/farmacologia , Citometria de Fluxo , Técnicas de Genotipagem , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Degeneração Retiniana/patologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...