Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 47(6): 1119-1122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839363

RESUMO

DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.


Assuntos
Anidrase Carbônica IX , Metilação de DNA , Epigênese Genética , Células Epiteliais , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Células Epiteliais/metabolismo , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Regiões Promotoras Genéticas , Células Cultivadas
2.
J Pharmacol Sci ; 154(3): 209-217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395522

RESUMO

Upregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via S-nitrosylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. S-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment. We found that nitrosative stress leads to S-nitrosylation of cysteine 119, located near the active site, and attenuates the enzymatic activity of PRMT1. Interestingly, RNA sequencing analysis revealed similarities in the changes in expression elicited by NO and PRMT1 inhibitors or knockdown. A comprehensive search for PRMT1 substrates using the proximity-dependent biotin identification method highlighted many known and new substrates, including RNA-metabolizing enzymes. To validate this result, we selected the RNA helicase DDX3 and demonstrated that arginine methylation of DDX3 is induced by PRMT1 and attenuated by NO treatment. Our results suggest the existence of a novel regulatory system associated with transcription and RNA metabolism via protein S-nitrosylation.


Assuntos
Arginina , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Arginina/metabolismo , Cisteína , Histonas/metabolismo , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...