Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 75: 103307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244535

RESUMO

FHL1 gene locates in the Xq26 region and encodes for four and half LIM domain protein 1. It plays a crucial role in muscle cells and mutations in FHL1 are related to muscular dystrophy (MD). Peripheral blood mononuclear cells (PBMCs) were obtained from 2 family patients with MD that carry a pathogenic missense mutation in FHL1 (c.377G > A, p.C126Y). Induced pluripotent stem cells (iPSCs) were generated by PBMCs reprogramming using the lentiviral-hSTEMCCA-loxP vector, obtaining FHL1-T and FHL1-V iPSCs lines from patients. FHL1 genotype was maintained, and stemness and pluripotency were confirmed in both iPSCs lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Musculares , Humanos , Mutação de Sentido Incorreto , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Musculares/genética , Mutação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética
2.
Stem Cell Res ; 71: 103157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393721

RESUMO

The arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by the progressive replacement of contractile myocardium by fibro-fatty adipose tissue, that generates ventricular arrhythmias and sudden death in patients. The ACM has a genetic origin with alterations in desmosomal genes with the most commonly mutated being the PKP2 gene. We generated two CRISPR/Cas9 edited iPSCs lines, one iPSC line with a point mutation in PKP2 reported in patients with ACM and another iPSC line with a premature stop codon to knock-out the same gene.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Mutação Puntual , Células-Tronco Pluripotentes Induzidas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Sistemas CRISPR-Cas/genética , Cardiomiopatias/genética , Mutação/genética , Placofilinas/genética , Placofilinas/metabolismo
3.
Cell Reprogram ; 23(5): 277-289, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648384

RESUMO

Somatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine. These are the use of less-differentiated donor cells to facilitate nuclear reprogramming and the embryo aggregation (EA) strategy that is thought to compensate for aberrant epigenome reprogramming. We carefully assessed the optimal time of EA by using in vitro-fertilized (IVF) embryos and evaluated whether the use of adipose-derived mesenchymal stem cells (ASCs) as donor for SCNT together with EA improves the blastocyst rates and quality. Based on our results, we determined that the EA improves the preimplantation embryo development per well of IVF and SCNT embryos. We also demonstrated that day 0 (D0) is the optimal aggregation time that leads to a single blastocyst with uniform distribution of the original blastomeres. This was confirmed in bovine IVF embryos and then, the optimal condition was translated to SCNT embryos. Notably, the relative expression of the trophectoderm (TE) marker KRT18 was significantly different between aggregated and nonaggregated ASC-derived embryos. In the bovine, no effect of the donor cell is observed on the developmental rate, or the embryo quality. Therefore, no synergistic effect of the use of both strategies is observed. Our results suggest that EA at D0 is a simple and accessible strategy that improves the blastocyst rate per well in bovine SCNT and IVF embryos and influence the expression of a TE-related marker. The aggregation of two ASC-derived embryos seems to positively affect the embryo quality, which may improve the postimplantation development.


Assuntos
Blastocisto/citologia , Clonagem de Organismos/veterinária , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Células-Tronco Mesenquimais/citologia , Animais , Bovinos , Embrião de Mamíferos/química , Feminino , Fertilização in vitro , Gravidez
4.
PLoS One ; 16(6): e0253666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166446

RESUMO

Cell death experiments are routinely done in many labs around the world, these experiments are the backbone of many assays for drug development. Cell death detection is usually performed in many ways, and requires time and reagents. However, cell death is preceded by slight morphological changes in cell shape and texture. In this paper, we trained a neural network to classify cells undergoing cell death. We found that the network was able to highly predict cell death after one hour of exposure to camptothecin. Moreover, this prediction largely outperforms human ability. Finally, we provide a simple python tool that can broadly be used to detect cell death.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador , Linguagens de Programação , Morte Celular , Humanos , Células MCF-7 , Microscopia
5.
Sci Rep ; 10(1): 15587, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973188

RESUMO

The application of new technologies for gene editing in horses may allow the generation of improved sportive individuals. Here, we aimed to knock out the myostatin gene (MSTN), a negative regulator of muscle mass development, using CRISPR/Cas9 and to generate edited embryos for the first time in horses. We nucleofected horse fetal fibroblasts with 1, 2 or 5 µg of 2 different gRNA/Cas9 plasmids targeting the first exon of MSTN. We observed that increasing plasmid concentrations improved mutation efficiency. The average efficiency was 63.6% for gRNA1 (14/22 edited clonal cell lines) and 96.2% for gRNA2 (25/26 edited clonal cell lines). Three clonal cell lines were chosen for embryo generation by somatic cell nuclear transfer: one with a monoallelic edition, one with biallelic heterozygous editions and one with a biallelic homozygous edition, which rendered edited blastocysts in each case. Both MSTN editions and off-targets were analyzed in the embryos. In conclusion, CRISPR/Cas9 proved an efficient method to edit the horse genome in a dose dependent manner with high specificity. Adapting this technology sport advantageous alleles could be generated, and a precision breeding program could be developed.


Assuntos
Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas , Embrião de Mamíferos/metabolismo , Edição de Genes , Técnicas de Inativação de Genes/veterinária , Miostatina/genética , Técnicas de Transferência Nuclear/veterinária , Animais , Sequência de Bases , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Cavalos , Mutação , Miostatina/antagonistas & inibidores , Homologia de Sequência
6.
PLoS One ; 15(5): e0232715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369512

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/citologia , RNA Interferente Pequeno/genética , Adulto , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo
7.
PLoS One ; 13(12): e0207074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30507934

RESUMO

Cell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. We aim to generate horse iPSCs, characterize them and evaluate the expression of different microRNAs (miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296). Two equine iPSC lines (L2 and L3) were characterized after the reprogramming of equine fibroblasts with the four human Yamanaka's factors (OCT-4/SOX-2/c-MYC/KLF4). The pluripotency of both lines was assessed by phosphatase alkaline activity, expression of OCT-4, NANOG and REX1 by RT-PCR, and by immunofluorescence of OCT-4, SOX-2 and c-MYC. In vitro differentiation to embryo bodies (EBs) showed the capacity of the iPSCs to differentiate into ectodermal, endodermal and mesodermal phenotypes. MicroRNA analyses resulted in higher expression of the miR-302 family, miR-9 and miR-96 in L2 and L3 vs. fibroblasts (p<0.05), as previously shown in human pluripotent cells. Moreover, downregulation of miR-145 and miR-205 was observed. After differentiation to EBs, higher expression of miR-96 was observed in the EBs respect to the iPSCs, and also the expression of miR-205 was induced but only in the EB-L2. In addition, in silico alignments of the equine microRNAs with mRNA targets suggested the ability of miR-302 family to regulate cell cycle and epithelial mesenchymal transition genes, miR-9 and miR-96 to regulate neural determinant genes and miR-145 to regulate pluripotent genes, similarly as in humans. In conclusion, we could obtain equine iPSCs, characterize them and determine for the first time the expression level of microRNAs in equine pluripotent cells.


Assuntos
Cavalos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , Animais , Diferenciação Celular/genética , Fibroblastos/citologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Técnicas de Transferência Nuclear
8.
Sci Rep ; 8(1): 8072, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795287

RESUMO

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression related to many cellular functions. We performed a small-RNAseq analysis of cardiac differentiation from pluripotent stem cells. Our analyses identified some new aspects about microRNA expression in this differentiation process. First, we described a dynamic expression profile of microRNAs where some of them are clustered according to their expression level. Second, we described the extensive network of isomiRs and ADAR modifications. Third, we identified the microRNAs families and clusters involved in the establishment of cardiac lineage and define the mirRNAome based on these groups. Finally, we were able to determine a more accurate miRNAome associated with cardiomyocytes by comparing the expressed microRNAs with other mature cells. MicroRNAs exert their effect in a complex and interconnected way, making necessary a global analysis to better understand their role. Our data expands the knowledge of microRNAs and their implications in cardiomyogenesis.


Assuntos
Biomarcadores/metabolismo , Linhagem da Célula/genética , Regulação da Expressão Gênica , Mesoderma/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Células Cultivadas , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mesoderma/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia
9.
PLoS One ; 11(10): e0164049, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27732616

RESUMO

The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs. adult fibroblasts (AF) fused to ooplasts injected with the pluripotency-inducing genes OCT4, SOX2, MYC and KLF4, vs. AF alone as controls; II) umbilical cord-derived mesenchymal stromal cells (UC-MSCs) vs. fetal fibroblasts derived from an unborn cloned foetus (FF) vs. AF from the original individual. In the first experiment, both blastocyst production and pregnancy rates were higher in the 2-3h group (11.5% and 9.5%, respectively), respect to <1h (5.2% and 2%, respectively) and 1-2h (5.6% and 4.7%, respectively) groups (P<0.05). However, percentages of born foals/pregnancies were similar when intervals of 2-3h (35.2%) or 1-2h (35.7%) were used. In contrast to AF, the iPSCs did not generate any blastocyst-stage embryos. Moreover, injection of oocytes with the pluripotency-inducing genes did not improve blastocyst production nor pregnancy rates respect to AF controls. Finally, higher blastocyst production was obtained using UC-MSC (15.6%) than using FF (8.9%) or AF (9.3%), (P<0.05). Despite pregnancy rates were similar for these 3 groups (17.6%, 18.2% and 22%, respectively), viable foals (two) were obtained only by using FF. In summary, optimum blastocyst production rates can be obtained using a 2-3h interval between cell fusion and activation as well as using UC-MSCs as nuclear donors. Moreover, FF line can improve the efficiency of an inefficient AF line. Overall, 24 healthy foals were obtained from a total of 29 born foals.


Assuntos
Núcleo Celular/fisiologia , Feto/citologia , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Blastocisto/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Transferência Embrionária , Feminino , Cavalos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/citologia , Microinjeções , Técnicas de Transferência Nuclear , Oócitos/citologia , Plasmídeos/genética , Plasmídeos/metabolismo , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cordão Umbilical/citologia
10.
PLoS One ; 11(2): e0146390, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26894831

RESUMO

In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.


Assuntos
Clonagem de Organismos , Embrião de Mamíferos , Desenvolvimento Embrionário , Animais , Apoptose , Blastocisto/citologia , Blastocisto/metabolismo , Reprogramação Celular/genética , Fragmentação do DNA , Técnicas de Cultura Embrionária , Transferência Embrionária , Expressão Gênica , Perfilação da Expressão Gênica , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...