Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 116(9): 090403, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991159

RESUMO

The existence of quantum correlations that allow one party to steer the quantum state of another party is a counterintuitive quantum effect that was described at the beginning of the past century. Steering occurs if entanglement can be proven even though the description of the measurements on one party is not known, while the other side is characterized. We introduce the concept of steering maps, which allow us to unlock sophisticated techniques that were developed in regular entanglement detection and to use them for certifying steerability. As an application, we show that this allows us to go beyond even the canonical steering scenario; it enables a generalized dimension-bounded steering where one only assumes the Hilbert space dimension on the characterized side, with no description of the measurements. Surprisingly, this does not weaken the detection strength of very symmetric scenarios that have recently been carried out in experiments.

2.
Phys Rev Lett ; 114(16): 160501, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955038

RESUMO

We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

3.
Phys Rev Lett ; 114(8): 080403, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768740

RESUMO

Common tools for obtaining physical density matrices in experimental quantum state tomography are shown here to cause systematic errors. For example, using maximum likelihood or least squares optimization to obtain physical estimates for the quantum state, we observe a systematic underestimation of the fidelity and an overestimation of entanglement. Such strongly biased estimates can be avoided using linear evaluation of the data or by linearizing measurement operators yielding reliable and computational simple error bounds.

4.
Phys Rev Lett ; 113(16): 160403, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361239

RESUMO

The fact that not all measurements can be carried out simultaneously is a peculiar feature of quantum mechanics and is responsible for many key phenomena in the theory, such as complementarity or uncertainty relations. For the special case of projective measurements, quantum behavior can be characterized by the commutator but for generalized measurements it is not easy to decide whether two measurements can still be understood in classical terms or whether the already show quantum features. We prove that a set of generalized measurements which does not satisfy the notion of joint measurability is nonclassical, as it can be used for the task of quantum steering. This shows that the notion of joint measurability is, among several definitions, the proper one to characterize quantum behavior. Moreover, the equivalence allows one to derive novel steering inequalities from known results on joint measurability and new criteria for joint measurability from known results on the steerability of states.

5.
Phys Rev Lett ; 113(4): 040503, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105604

RESUMO

Quantum state tomography suffers from the measurement effort increasing exponentially with the number of qubits. Here, we demonstrate permutationally invariant tomography for which, contrary to conventional tomography, all resources scale polynomially with the number of qubits both in terms of the measurement effort as well as the computational power needed to process and store the recorded data. We demonstrate the benefits of combining permutationally invariant tomography with compressed sensing by studying the influence of the pump power on the noise present in a six-qubit symmetric Dicke state, a case where full tomography is possible only for very high pump powers.

6.
Phys Rev Lett ; 113(5): 050404, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126904

RESUMO

Quantum correlations are at the heart of many applications in quantum information science and, at the same time, they form the basis for discussions about genuine quantum effects and their difference to classical physics. On one hand, entanglement theory provides the tools to quantify correlations in information processing and many results have been obtained to discriminate useful entanglement, which can be distilled to a pure form, from bound entanglement, being of limited use in many applications. On the other hand, for discriminating quantum phenomena from their classical counterparts, Schrödinger and Bell introduced the notions of steering and local hidden variable models. We provide a method to generate systematically bound entangled quantum states which can still be used for steering and, therefore, to rule out local hidden state models. This sheds light on the relations between the various views on quantum correlations and disproves a widespread conjecture known as the stronger Peres conjecture. For practical applications, it implies that even the weakest form of entanglement can be certified in a semidevice independent way.

7.
Phys Rev Lett ; 111(3): 030501, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23909300

RESUMO

We present a general method to quantify both bipartite and multipartite entanglement in a device-independent manner, meaning that we put a lower bound on the amount of entanglement present in a system based on the observed data only but independent of any quantum description of the employed devices. Some of the bounds we obtain, such as for the Clauser-Horne-Shimony-Holt Bell inequality or the Svetlichny inequality, are shown to be tight. Besides, device-independent entanglement quantification can serve as a basis for numerous tasks. We show in particular that our method provides a rigorous way to construct dimension witnesses, gives new insights into the question whether bound entangled states can violate a Bell inequality, and can be used to construct device-independent entanglement witnesses involving an arbitrary number of parties.

8.
Phys Rev Lett ; 111(2): 020403, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889373

RESUMO

Sequential measurements on a single particle play an important role in fundamental tests of quantum mechanics. We provide a general method to analyze temporal quantum correlations, which allows us to compute the maximal correlations for sequential measurements in quantum mechanics. As an application, we present the full characterization of temporal correlations in the simplest Leggett-Garg scenario and in the sequential measurement scenario associated with the most fundamental proof of the Kochen-Specker theorem.

9.
Phys Rev Lett ; 110(18): 180401, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683179

RESUMO

When experimental errors are ignored in an experiment, the subsequent analysis of its results becomes questionable. We develop tests to detect systematic errors in quantum experiments where only a finite amount of data is recorded and apply these tests to tomographic data taken in an ion trap experiment. We put particular emphasis on quantum state tomography and present three detection methods: the first two employ linear inequalities while the third is based on the generalized likelihood ratio.

10.
Phys Rev Lett ; 109(26): 260501, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368542

RESUMO

Distributed-phase-reference quantum key distribution stands out for its easy implementation with present day technology. For many years, a full security proof of these schemes in a realistic setting has been elusive. We solve this long-standing problem and present a generic method to prove the security of such protocols against general attacks. To illustrate our result, we provide lower bounds on the key generation rate of a variant of the coherent-one-way quantum key distribution protocol. In contrast to standard predictions, it appears to scale quadratically with the system transmittance.

11.
Phys Rev Lett ; 106(19): 190502, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668133

RESUMO

We present an approach to characterize genuine multiparticle entanglement by using appropriate approximations in the space of quantum states. This leads to a criterion for entanglement which can easily be calculated by using semidefinite programing and improves all existing approaches significantly. Experimentally, it can also be evaluated when only some observables are measured. Furthermore, it results in a computable entanglement monotone for genuine multiparticle entanglement. Based on this, we develop an analytical approach for the entanglement detection in cluster states, leading to an exponential improvement compared with existing schemes.

12.
Opt Lett ; 34(20): 3238-40, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19838285

RESUMO

We propose a method to prepare different non-Poissonian signal pulses from sources of Poissonian photon number distribution, using only linear optical elements and threshold photon detectors. This method allows a simple passive preparation of decoy states for quantum key distribution. We show that the resulting key rates are comparable with the performance of active choices of intensities of Poissonian signals.

13.
Phys Rev Lett ; 101(9): 093601, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18851610

RESUMO

Measurements with photodetectors are naturally described in the infinite dimensional Fock space of one or several modes. For some measurements, a model has been postulated which describes the full measurement as a composition of a mapping (squashing) of the signal into a small dimensional Hilbert space followed by a specified target measurement. We present a formalism to investigate whether a given measurement pair of full and target measurements can be connected by a squashing model. We show that a measurement used in the Bennett-Brassard 1984 (BB84) protocol does allow a squashing description, although the corresponding six-state protocol measurement does not. As a result, security proofs for the BB84 protocol can be based on the assumption that the eavesdropper forwards at most one photon, while the same does not hold for the six-state protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...