Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895596

RESUMO

In this study, advanced exergy and exergoeconomic analysis are applied to an Organic Rankine Cycle (ORC) for waste heat recovery to identify the potential for thermodynamic and economic improvement of the system (splitting the decision variables into avoidable/unavoidable parts) and the interdependencies between the components (endogenous and exogenous parts). For the first time, the advanced analysis has been applied under different conditions: constant heat rate supplied to the ORC or constant power generated by the ORC. The system simulation was performed in Matlab. The results show that the interactions among components of the ORC system are not strong; therefore, the approach of component-by-component optimization can be applied. The evaporator and condenser are important components to be improved from both thermodynamic and cost perspectives. The advanced exergoeconomic (graphical) optimization of these components indicates that the minimum temperature difference in the evaporator should be increased while the minimum temperature difference in the condenser should be decreased. The optimization results show that the exergetic efficiency of the ORC system can be improved from 27.1% to 27.7%, while the cost of generated electricity decreased from 18.14 USD/GJ to 18.09 USD/GJ.

2.
Entropy (Basel) ; 25(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36673218

RESUMO

Rapid development in the renewable energy sector require energy storage facilities. Currently, pumped storage power plants provide the most large-scale storage in the world. Another option for large-scale system storage is compressed air energy storage (CAES). This paper discusses a particular case of CAES-an adiabatic underwater energy storage system based on compressed air-and its evaluation using advanced exergy analysis. The energy storage system is charged during the valleys of load and discharged at peaks. The model was built using Aspen HYSYS software. Advanced exergy analysis revealed interactions between system components and the potential for improving both system components individually and the system as a whole. The most significant reduction in exergy destruction can be achieved with heat exchangers. The round-trip efficiency of this system is 64.1% and 87.9% for real and unavoidable operation conditions, respectively.

3.
Entropy (Basel) ; 23(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34441094

RESUMO

In this paper, the performance of an organic Rankine cycle with a zeotropic mixture as a working fluid was evaluated using exergy-based methods: exergy, exergoeconomic, and exergoenvironmental analyses. The effect of system operation parameters and mixtures on the organic Rankine cycle's performance was evaluated as well. The considered performances were the following: exergy efficiency, specific cost, and specific environmental effect of the net power generation. A multi-objective optimization approach was applied for parametric optimization. The approach was based on the particle swarm algorithm to find a set of Pareto optimal solutions. One final optimal solution was selected using a decision-making method. The optimization results indicated that the zeotropic mixture of cyclohexane/toluene had a higher thermodynamic and economic performance, while the benzene/toluene zeotropic mixture had the highest environmental performance. Finally, a comparative analysis of zeotropic mixtures and pure fluids was conducted. The organic Rankine cycle with the mixtures as working fluids showed significant improvement in energetic, economic, and environmental performances.

4.
Entropy (Basel) ; 22(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33286207

RESUMO

A system that combines a vapor compression refrigeration system (VCRS) with a vapor absorption refrigeration system (VARS) merges the advantages of both processes, resulting in a more cost-effective system. In such a cascade system, the electrical power for VCRS and the heat energy for VARS can be significantly reduced, resulting in a coefficient of performance (COP) value higher than the value of each system operating in standalone mode. A previously developed optimization model of a series flow double-effect H2O-LiBr VARS is extended to a superstructure-based optimization model to embed several possible configurations. This model is coupled to an R134a VCRS model. The problem consists in finding the optimal configuration of the cascade system and the sizes and operating conditions of all system components that minimize the total heat transfer area of the system, while satisfying given design specifications (evaporator temperature and refrigeration capacity of -17.0 °C and 50.0 kW, respectively), and using steam at 130 °C, by applying mathematical programming methods. The obtained configuration is different from those reported for combinations of double-effect H2O-LiBr VAR and VCR systems. The obtained optimal configuration is compared to the available data. The obtained total heat transfer area is around 7.3% smaller than that of the reference case.

5.
Entropy (Basel) ; 22(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-33286428

RESUMO

The transition towards higher shares of electricity generation from renewable energy sources is shown to be significantly slower in developing countries with low-cost fossil fuel resources. Integrating conventional power plants with concentrated solar power may facilitate the transition towards a more sustainable power production. In this paper, a novel natural gas-fired integrated solar combined-cycle power plant was proposed, evaluated, and optimized with exergy-based methods. The proposed system utilizes the advantages of combined-cycle power plants, direct steam generation, and linear Fresnel collectors to provide 475 MW baseload power in Aswan, Egypt. The proposed system is found to reach exergetic efficiencies of 50.7% and 58.1% for day and night operations, respectively. In economic analysis, a weighted average levelized cost of electricity of 40.0 $/MWh based on the number of day and night operation hours is identified. In exergoeconomic analysis, the costs of thermodynamic inefficiencies were identified and compared to the component cost rates. Different measures for component cost reduction and performance enhancement were identified and applied. Using iterative exergoeconomic optimization, the levelized cost of electricity is reduced to a weighted average of 39.2 $/MWh and a specific investment cost of 1088 $/kW. Finally, the proposed system is found to be competitive with existing integrated solar combined-cycle plants, while allowing a significantly higher solar share of 17% of the installed capacity.

6.
Entropy (Basel) ; 22(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33286476

RESUMO

Solar energy is utilized in a combined ejector refrigeration system with an organic Rankine cycle (ORC) to produce a cooling effect and generate electrical power. This study aims at increasing the utilized share of the collected solar thermal energy by inserting an ORC into the system. As the ejector refrigeration cycle reaches its maximum coefficient of performance (COP), the ORC starts working and generating electrical power. This electricity is used to run the circulating pumps and the control system, which makes the system autonomous. For the ejector refrigeration system, R134a refrigerant is selected as the working fluid for its performance characteristics and environmentally friendly nature. The COP of 0.53 was obtained for the ejector refrigeration cycle. The combined cycle of the solar ejector refrigeration and ORC is modeled in EBSILON Professional. Different parameters like generator temperature and pressure, condenser temperature and pressure, and entrainment ratio are studied, and the effect of these parameters on the cycle COP is investigated. Exergy, economic, and exergoeconomic analyses of the hybrid system are carried out to identify the thermodynamic and cost inefficiencies present in various components of the system.

7.
Environ Sci Technol ; 46(5): 3001-7, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22239071

RESUMO

Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Meio Ambiente , Monitoramento Ambiental/métodos , Centrais Elétricas , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...