Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 83: 100843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920983

RESUMO

The phosphoinositide 3-kinase (PI3K) signalling pathway plays key roles in many cellular processes and is altered in many diseases. The function and mode of action of the pathway have mostly been elucidated in the cytoplasm. However, many of the components of the PI3K pathway are also present in the nucleus at specific sub-nuclear sites including nuclear speckles, nuclear lipid islets and the nucleolus. Nucleoli are membrane-less subnuclear structures where ribosome biogenesis occurs. Processes leading to ribosome biogenesis are tightly regulated to maintain protein translation capacity of cells. This review focuses on nucleolar PI3K signalling and how it regulates rRNA synthesis, as well as on the identification of downstream phosphatidylinositol (3,4,5)trisphosphate effector proteins.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
2.
Mol Cell Proteomics ; 20: 100102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048982

RESUMO

Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus.


Assuntos
Núcleo Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Células HeLa , Humanos , Mapas de Interação de Proteínas
3.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33536247

RESUMO

The class I phosphoinositide 3-kinase (PI3K) catalytic subunits p110α and p110ß are ubiquitously expressed but differently targeted in tumours. In cancer, PIK3CB (encoding p110ß) is seldom mutated compared with PIK3CA (encoding p110α) but can contribute to tumorigenesis in certain PTEN-deficient tumours. The underlying molecular mechanisms are, however, unclear. We have previously reported that p110ß is highly expressed in endometrial cancer (EC) cell lines and at the mRNA level in primary patient tumours. Here, we show that p110ß protein levels are high in both the cytoplasmic and nuclear compartments in EC cells. Moreover, high nuclear:cytoplasmic staining ratios were detected in high-grade primary tumours. High levels of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] were measured in the nucleus of EC cells, and pharmacological and genetic approaches showed that its production was partly dependent upon p110ß activity. Using immunofluorescence staining, p110ß and PtdIns(3,4,5)P3 were localised in the nucleolus, which correlated with high levels of 47S pre-rRNA. p110ß inhibition led to a decrease in both 47S rRNA levels and cell proliferation. In conclusion, these results present a nucleolar role for p110ß that may contribute to tumorigenesis in EC.This article has an associated First Person interview with Fatemeh Mazloumi Gavgani, joint first author of the paper.


Assuntos
Neoplasias do Endométrio , Fosfatidilinositol 3-Quinase , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Feminino , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...