Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; : PHYTO01240019R, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38970808

RESUMO

Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.

2.
Vaccines (Basel) ; 11(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37376421

RESUMO

Newcastle disease virus (NDV, Avian orthoavulavirus type 1, AOAV-1) is a contagious high-impact poultry pathogen with infections detected worldwide. In the present study, 19,500 clinical samples from wild bird species and poultry collected from 28 regions of Russia between 2017 and 2021 were screened for the presence of the AOAV-1 genome. NDV RNA was detected in 15 samples from wild birds and 63 samples from poultry. All isolates were screened for a partial sequence of the fusion (F) gene that included the cleavage site. Phylogenetic analysis demonstrated that lentogenic AOAV-1 I.1.1, I.1.2.1, and II genotypes were dominant among vaccine-like viruses in the territory of the Russian Federation. A vaccine-like virus with a mutated cleavage site (112-RKQGR^L-117) was detected in turkeys. Among the virulent AOAV-1 strains, viruses of the XXI.1.1, VII.1.1, and VII.2 genotypes were identified. The cleavage site of viruses of the XXI.1.1 genotype had a 112-KRQKR^F-117 amino acid sequence. The cleavage site of viruses with VII.1.1 and VII.2 genotypes had a 112-RRQKR^F-117 amino acid sequence. The data collected by the present study demonstrate the distribution and dominance of the virulent VII.1.1 genotype in the Russian Federation between 2017 and 2021.

3.
Plant Dis ; 107(8): 2288-2295, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36724099

RESUMO

Early detection of causal pathogens is important to prevent crop loss from diseases. However, some diseases, such as soilborne diseases, are difficult to diagnose due to the absence of visible or characteristic symptoms. In the present study, the use of the Oxford Nanopore MinION sequencer as a molecular diagnostic tool was assessed due to its long-read sequencing capabilities and portability. Nucleotide samples (DNA or RNA) from potato field soils were sequenced and analyzed using a locally curated pathogen database, followed by identification via sequence mapping. We performed computational speed tests of three commonly used mapping/annotation tools (BLAST, BWA-BLAST, and BWA-GraphMap) and found BWA-GraphMap to be the fastest tool for local searching against our curated pathogen database. The data collected demonstrate the high potential of Nanopore sequencing as a minimally biased diagnostic tool for comprehensive pathogen detection in soil from potato fields. Our GraphMap-based MinION sequencing method could be useful as a predictive approach for disease management by identifying pathogens present in field soil prior to planting. Although this method still needs further experimentation with a larger sample size for practical use, the data analysis pipeline presented can be applied to other cropping systems and diagnostics for detecting multiple pathogens.


Assuntos
Sequenciamento por Nanoporos , Solanum tuberosum , Solo , Sequenciamento por Nanoporos/métodos
4.
J Exp Bot ; 72(12): 4472-4488, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33681961

RESUMO

The role of small secreted peptides in plant defense responses to viruses has seldom been investigated. Here, we report a role for potato (Solanum tuberosum) PIP1, a gene predicted to encode a member of the pathogen-associated molecular pattern (PAMP)-induced peptide (PIP) family, in the response of potato to Potato virus Y (PVY) infection. We show that exogenous application of synthetic StPIP1 to potato leaves and nodes increased the production of reactive oxygen species and the expression of plant defense-related genes, revealing that StPIP1 triggers early defense responses. In support of this hypothesis, transgenic potato plants that constitutively overexpress StPIP1 had higher levels of leaf callose deposition and, based on measurements of viral RNA titers, were less susceptible to infection by a compatible PVY strain. Interestingly, systemic infection of StPIP1-overexpressing lines with PVY resulted in clear rugose mosaic symptoms that were absent or very mild in infected non-transgenic plants. A transcriptomics analysis revealed that marker genes associated with both pattern-triggered immunity and effector-triggered immunity were induced in infected StPIP1 overexpressors but not in non-transgenic plants. Together, our results reveal a role for StPIP1 in eliciting plant defense responses and in regulating plant antiviral immunity.


Assuntos
Potyvirus , Solanum tuberosum , Moléculas com Motivos Associados a Patógenos , Peptídeos , Doenças das Plantas , Solanum tuberosum/genética
5.
Plant Physiol ; 186(2): 945-963, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33620500

RESUMO

The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.


Assuntos
Arabidopsis/genética , Citocinese/genética , Forminas/metabolismo , Nicotiana/genética , Tionas/farmacologia , Uracila/análogos & derivados , Actinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Citocinese/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Forminas/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Tubulina (Proteína)/metabolismo , Uracila/farmacologia
6.
Protein Sci ; 30(2): 423-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206408

RESUMO

Tropomodulins are a family of important regulators of actin dynamics at the pointed ends of actin filaments. Four isoforms of tropomodulin, Tmod1-Tmod4, are expressed in vertebrates. Binding of tropomodulin to the pointed end is dependent on tropomyosin, an actin binding protein that itself is represented in mammals by up to 40 isoforms. The understanding of the regulatory role of the tropomodulin/tropomyosin molecular diversity has been limited due to the lack of a three-dimensional structure of the tropomodulin/tropomyosin complex. In this study, we mapped tropomyosin residues interacting with two tropomyosin-binding sites of tropomodulin and generated a three-dimensional model of the tropomodulin/tropomyosin complex for each of these sites. The models were refined by molecular dynamics simulations and validated via building a self-consistent three-dimensional model of tropomodulin assembly at the pointed end. The model of the pointed-end Tmod assembly offers new insights in how Tmod binding ensures tight control over the pointed end dynamics.


Assuntos
Citoesqueleto de Actina/química , Simulação de Dinâmica Molecular , Tropomodulina/química , Animais , Camundongos , Isoformas de Proteínas/química
7.
Mol Plant Microbe Interact ; 33(2): 247-255, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31644369

RESUMO

The first layer of plant immunity is deployed by recognition of pathogen-associated molecule patterns (PAMPs) and induction of early stress responses. Flagellin is the major protein component of the flagellum. Flagellin-derived peptide fragments such as Flg22, a short active peptide derived from the highly conserved part of the N-terminal region, are recognized as PAMPs by a specific perception system present in most higher plants. Some bacteria evade the plant recognition system by altering the Flg22 region in the flagellin. Instead, a small subset of plants (i.e., solanaceous plants) can sense these bacteria by recognizing a second region, termed FlgII-28. The function of FlgII-28 has been well-documented in tomato but not in potato plants. Here, we investigated the effect of FlgII-28 on several defense responses in potato. Cytosolic calcium (Ca2+) elevation is an early defense response upon pathogenic infection. We generated transgenic potato plants expressing aequorin, a nontoxic Ca2+-activated photoprotein. The results showed that FlgII-28 induced strong cytosolic Ca2+ elevation in a dose-dependent manner, whereas the response was attenuated when a Ca2+ channel blocker was added. In addition, the FlgII-28-triggered cytosolic Ca2+ elevation was shown to subsequently promote extracellular alkalinization, reactive oxygen species production, mitogen-activated protein kinase phosphorylation, and transcriptional reprogramming of defense-related genes in potato. Interestingly, all tested defense responses caused by FlgII-28 were significantly stronger than those caused by Flg22, suggesting that FlgII-28 acts as a primary flagellar PAMP to elicit multiple defense responses in potato.


Assuntos
Flagelina , Imunidade Vegetal , Solanum tuberosum , Cálcio/metabolismo , Citosol/química , Citosol/imunologia , Flagelina/genética , Flagelina/imunologia , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Solanum tuberosum/genética , Solanum tuberosum/imunologia
8.
J Vis Exp ; (132)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29553557

RESUMO

On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis.


Assuntos
Patologia Vegetal , Reação em Cadeia da Polimerase em Tempo Real/métodos , Solo/química
9.
Front Plant Sci ; 8: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174578

RESUMO

A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

10.
Curr Protoc Plant Biol ; 2(3): 210-220, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31725970

RESUMO

Plant recognition of invading organisms occurs through identification of foreign molecules associated with attackers and of self-derived, damage-associated molecules. Perception of these molecules activates signaling processes including dynamic changes in ion balance, production of second messengers such as reactive oxygen species and nitric oxide, increased levels of plant hormones, and map kinase cascade activation. Together these signaling events stimulate transcriptional changes to initiate plant defense responses. Among the earliest detectable signaling events is a rapid increase in apoplastic pH, i.e., extracellular alkalinization. Here, an assay for quantification of this alkalinization response using suspension-cultured cell lines for Arabidopsis, potato, and maize is described. This assay is an inexpensive, fast, simple, and reproducible method to quantify defense signaling output, providing a powerful tool for evaluating early plant responses to elicitors and pathogens. Results from the alkalinization assay are comparable to other more costly and time-consuming methods for assessing defense signaling, such as measurement of the oxidative burst, calcium influx, and marker gene expression. This bioassay is a quantitative and robust method for evaluation of plant defense output. © 2017 by John Wiley & Sons, Inc.

11.
Mol Biol Cell ; 27(16): 2565-75, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307584

RESUMO

Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Galinhas , Proteínas do Citoesqueleto/genética , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Ligação Proteica , Domínios Proteicos , Sarcômeros/metabolismo , Tropomodulina/genética , Tropomodulina/metabolismo , Tropomiosina/metabolismo
12.
Arch Biochem Biophys ; 600: 23-32, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27091317

RESUMO

The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.


Assuntos
Tropomodulina/química , Tropomodulina/ultraestrutura , Tropomiosina/química , Tropomiosina/ultraestrutura , Sítios de Ligação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestrutura , Relação Estrutura-Atividade
13.
Biochim Biophys Acta ; 1864(5): 523-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873245

RESUMO

The development of some familial dilated cardiomyopathies (DCM) correlates with the presence of mutations in proteins that regulate the organization and function of thin filaments in cardiac muscle cells. Harmful effects of some mutations might be caused by disruption of yet uncharacterized protein-protein interactions. We used nuclear magnetic resonance spectroscopy to localize the region of striated muscle α-tropomyosin (Tpm1.1) that interacts with leiomodin-2 (Lmod2), a member of tropomodulin (Tmod) family of actin-binding proteins. We found that 21 N-terminal residues of Tpm1.1 are involved in interactions with residues 7-41 of Lmod2. The K15N mutation in Tpm1.1, known to be associated with familial DCM, is located within the newly identified Lmod2 binding site of Tpm1.1. We studied the effect of this mutation on binding Lmod2 and Tmod1. The mutation reduced binding affinity for both Lmod2 and Tmod1, which are responsible for correct lengths of thin filaments. The effect of the K15N mutation on Tpm1.1 binding to Lmod2 and Tmod1 provides a molecular rationale for the development of familial DCM.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Sequência de Aminoácidos/genética , Sítios de Ligação , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Dicroísmo Circular , Humanos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Estriado/química , Músculo Estriado/metabolismo , Músculo Estriado/patologia , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Tropomodulina/química , Tropomodulina/genética , Tropomiosina/química , Tropomiosina/genética
15.
J Clin Invest ; 124(11): 4693-708, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25250574

RESUMO

Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.


Assuntos
Proteínas Musculares/genética , Miofibrilas/patologia , Miopatias da Nemalina/genética , Actinas/química , Animais , Células Cultivadas , Análise Mutacional de DNA , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Masculino , Proteínas dos Microfilamentos , Proteínas Musculares/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Miopatias da Nemalina/patologia , Multimerização Proteica , Peixe-Zebra
16.
Biochemistry ; 53(16): 2689-700, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24746171

RESUMO

Actin dynamics is fundamental for neurite development; monomer depolymerization from pointed ends is rate-limiting in actin treadmilling. Tropomodulins (Tmod) make up a family of actin pointed end-capping proteins. Of the four known isoforms, Tmod1-Tmod3 are expressed in brain cells. We investigated the role of Tmod's C-terminal (LRR) domain in the formation of neurite-like processes by overexpressing Tmod1 and Tmod2 with deleted or mutated LRR domains in PC12 cells, a model system used to study neuritogenesis. Tmod1 overexpression results in a normal quantity and a normal length of processes, while Tmod2 overexpression reduces both measures. The Tmod2 overexpression phenotype is mimicked by overexpression of Tmod1 with the LRR domain removed or with three point mutations in the LRR domain that disrupt exposed clusters of conserved residues. Removal of Tmod2's LRR domain does not significantly alter the outgrowth of neurite-like processes compared to that of Tmod2. Overexpression of chimeras with the N-terminal and C-terminal domains switched between Tmod1 and Tmod2 reinforces the idea that Tmod1's LRR domain counteracts the reductive effect of the Tmod N-terminal domain upon formation of processes while Tmod2's LRR domain does not. We suggest that the TM-dependent actin capping ability of both Tmods inhibits the formation of processes, but in Tmod1, this inhibition can be controlled via its LRR domain. Circular dichroism, limited proteolysis, and molecular dynamics demonstrate structural differences in the C-terminal region of the LRR domains of Tmod1, Tmod2, and the Tmod1 mutant.


Assuntos
Neuritos/metabolismo , Tropomodulina/metabolismo , Animais , Diferenciação Celular , Dicroísmo Circular , Leucina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Células PC12 , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Tropomodulina/química , Tropomodulina/genética
17.
J Bacteriol ; 196(6): 1215-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24415724

RESUMO

Flagella are extracellular organelles that propel bacteria. Each flagellum consists of a basal body, a hook, and a filament. The major protein of the filament is flagellin. Induction of flagellin gene expression coincides with secretion of FlgM. The role of FlgM is to inhibit FliA (σ(28)), a flagellum-specific RNA polymerase responsible for flagellin transcription. To prevent premature polymerization of newly synthesized flagellin molecules, FliS, the flagellin-specific chaperone, binds flagellin and facilitates its export. In this study, the interaction between FlgM and FliS from Salmonella enterica serovar Typhimurium was characterized using gel shift, intrinsic tryptophan fluorescence, circular dichroism, limited proteolysis, and cross-linking. We have demonstrated that (i) FliS and FlgM interact specifically, forming a 1:1 complex, (ii) the FliS binding site on FlgM is proximal to or even overlaps the binding site for FliA, and (iii) FliA competes with FliS for FlgM binding.


Assuntos
Proteínas de Bactérias/metabolismo , Mapeamento de Interação de Proteínas , Salmonella typhimurium/metabolismo , Dicroísmo Circular , Reagentes de Ligações Cruzadas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fluorometria , Ligação Proteica , Proteólise , Fator sigma/metabolismo
18.
J Muscle Res Cell Motil ; 34(3-4): 247-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23828180

RESUMO

Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.


Assuntos
Tropomodulina/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas , Tropomodulina/química , Tropomiosina/química
19.
PeerJ ; 1: e7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638401

RESUMO

Assembly of the actin cytoskeleton is an important part of formation of neurites in developing neurons. Tropomodulin, a tropomyosin-dependent capping protein for the pointed end of the actin filament, is one of the key players in this process. Tropomodulin binds tropomyosin in two binding sites. Tmod1 and Tmod2, tropomodulin isoforms found in neurons, were overexpressed in PC12 cells, a model system for neuronal differentiation. Tmod1 did not affect neuronal differentiation; while cells expressing Tmod2 showed a significant reduction in the number and the length of neurites. Both tropomodulins bind short α-, γ- and δ-tropomyosin isoforms. Mutations in one of the tropomyosin-binding sites of Tmod1, which increased its affinity to short γ- and δ-tropomyosin isoforms, caused a decrease in binding short α-tropomyosin isoforms along with a 2-fold decrease in the length of neurites. Our data demonstrate that Tmod1 is involved in neuronal differentiation for proper neurite formation and outgrowth, and that Tmod2 inhibits these processes. The mutations in the tropomyosin-binding site of Tmod1 impair neurite outgrowth, suggesting that the integrity of this binding site is critical for the proper function of Tmod1 during neuronal differentiation.

20.
J Biol Chem ; 288(7): 4899-907, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23271735

RESUMO

Tropomodulin (Tmod) is an actin-capping protein that binds to the two tropomyosins (TM) at the pointed end of the actin filament to prevent further actin polymerization and depolymerization. Therefore, understanding the role of Tmod is very important when studying actin filament dependent processes such as muscle contraction and intracellular transport. The capping ability of Tmod is highly influenced by TM and is 1000-fold greater in the presence of TM. There are four Tmod isoforms (Tmod1-4), three of which, Tmod1, Tmod3, and Tmod4, are expressed in skeletal muscles. The affinity of Tmod1 to skeletal striated TM (stTM) is higher than that of Tmod3 and Tmod4 to stTM. In this study, we tested mutations in the TM-binding sites of Tmod1, using circular dichroism (CD) and prediction analysis (PONDR). The mutations R11K, D12N, and Q144K were chosen because they decreased the affinity of Tmod1 to stTM, making it similar to that of affinity of Tmod3 and Tmod4 to stTM. Significant reduction of inhibition of actin pointed-end polymerization in the presence of stTM was shown for Tmod1 (R11K/D12N/Q144K) as compared with WT Tmod1. When GFP-Tmod1 and mutants were expressed in primary chicken skeletal myocytes, decreased assembly of Tmod1 mutants was revealed. This indicates a direct correlation between TM-binding and the actin-capping abilities of Tmod. Our data confirmed the hypothesis that assembly of Tmod at the pointed-end of the actin filament depends on its TM-binding affinity.


Assuntos
Regulação da Expressão Gênica , Células Musculares/citologia , Músculo Esquelético/citologia , Tropomodulina/química , Tropomodulina/genética , Tropomiosina/química , Citoesqueleto de Actina/química , Actinas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Dicroísmo Circular , Camundongos , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Isoformas de Proteínas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA