Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 624: 1429-1442, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929254

RESUMO

Mountain ecosystems are sensitive and reliable indicators of climate change. Long-term studies may be extremely useful in assessing the responses of high-elevation ecosystems to climate change and other anthropogenic drivers from a broad ecological perspective. Mountain research sites within the LTER (Long-Term Ecological Research) network are representative of various types of ecosystems and span a wide bioclimatic and elevational range. Here, we present a synthesis and a review of the main results from ecological studies in mountain ecosystems at 20 LTER sites in Italy, Switzerland and Austria covering in most cases more than two decades of observations. We analyzed a set of key climate parameters, such as temperature and snow cover duration, in relation to vascular plant species composition, plant traits, abundance patterns, pedoclimate, nutrient dynamics in soils and water, phenology and composition of freshwater biota. The overall results highlight the rapid response of mountain ecosystems to climate change, with site-specific characteristics and rates. As temperatures increased, vegetation cover in alpine and subalpine summits increased as well. Years with limited snow cover duration caused an increase in soil temperature and microbial biomass during the growing season. Effects on freshwater ecosystems were also observed, in terms of increases in solutes, decreases in nitrates and changes in plankton phenology and benthos communities. This work highlights the importance of comparing and integrating long-term ecological data collected in different ecosystems for a more comprehensive overview of the ecological effects of climate change. Nevertheless, there is a need for (i) adopting co-located monitoring site networks to improve our ability to obtain sound results from cross-site analysis, (ii) carrying out further studies, in particular short-term analyses with fine spatial and temporal resolutions to improve our understanding of responses to extreme events, and (iii) increasing comparability and standardizing protocols across networks to distinguish local patterns from global patterns.

2.
Int J Biometeorol ; 57(6): 871-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23263743

RESUMO

This manuscript presents a study aimed at characterizing the seasonal course of photosynthetic capacity of an alpine deciduous conifer, European larch (Larix decidua Mill.), based on chlorophyll fluorescence measurements and photosynthetic pigment analysis. The study focused on the characterization of autumn senescence events which (contrary to bud-burst) are still scarcely investigated. The study was conducted on two natural European larch stands in the northwestern Italian Alps during two consecutive years. The results show that photosynthetic efficiency as assessed by fluorescence measurements was controlled by variations in air and soil temperature. Photosynthesis responded to variations in maximum air and soil temperature in a delayed way, with a varying lag depending on the seasonal period considered. The analysis of photosynthetic efficiency and pigment decline at the end of the growing season identified two senescence phases. During early senescence, plants manifested only the beginning of needle decolouration, while during late senescence pigment degradation led to a loss in photosynthetic efficiency. This behavior indicates that the beginning of needle yellowing and the decline in photosynthetic efficiency can occur at different times-a finding that should be considered in order to improve models of ecosystem processes.


Assuntos
Envelhecimento/fisiologia , Clorofila/metabolismo , Larix/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Temperatura , Aclimatação/fisiologia , Aclimatação/efeitos da radiação , Envelhecimento/efeitos da radiação , Ecossistema , Larix/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação
3.
Int J Biometeorol ; 52(7): 587-605, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18437430

RESUMO

Vegetation phenology is strongly influenced by climatic factors. Climate changes may cause phenological variations, especially in the Alps which are considered to be extremely vulnerable to global warming. The main goal of our study is to analyze European larch (Larix decidua Mill.) phenology in alpine environments and the role of the ecological factors involved, using an integrated approach based on accurate field observations and modelling techniques. We present 2 years of field-collected larch phenological data, obtained following a specifically designed observation protocol. We observed that both spring and autumn larch phenology is strongly influenced by altitude. We propose an approach for the optimization of a spring warming model (SW) and the growing season index model (GSI) consisting of a model inversion technique, based on simulated look-up tables (LUTs), that provides robust parameter estimates. The optimized models showed excellent agreement between modelled and observed data: the SW model predicts the beginning of the growing season (B(GS)) with a mean RMSE of 4 days, while GSI gives a prediction of the growing season length (L(GS)) with a RMSE of 5 days. Moreover, we showed that the original GSI parameters led to consistent errors, while the optimized ones significantly increased model accuracy. Finally, we used GSI to investigate interactions of ecological factors during springtime development and autumn senescence. We found that temperature is the most effective factor during spring recovery while photoperiod plays an important role during autumn senescence: photoperiod shows a contrasting effect with altitude decreasing its influence with increasing altitude.


Assuntos
Altitude , Ecossistema , Monitoramento Ambiental/métodos , Modelos Biológicos , Periodicidade , Tempo (Meteorologia) , Simulação por Computador , Itália , Larix
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...