Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(3): 421-432, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326105

RESUMO

Skin volatile emissions offer a noninvasive insight into metabolic activity within the body as well as the skin microbiome and specific volatile compounds have been shown to correlate with age, albeit only in a few small studies. Building on this, here skin volatiles were collected and analyzed in a healthy participant study (n = 60) using a robust headspace-solid phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) workflow. Following processing, 18 identified compounds were deemed suitable for this study. These were classified according to gender influences and their correlations with age were investigated. Finally, 6 volatiles (of both endogenous and exogenous origin) were identified as significantly changing in abundance with participant age (p < 0.1). The potential origins of these dysregulations are discussed. Multiple linear regression (MLR) analysis was employed to model age based on these significant volatiles as independent variables, along with gender. Our analysis shows that skin volatiles show a strong predictive ability for age (explained variance of 68%), stronger than other biochemical measures collected in this study (skin surface pH, water content) which are understood to vary with chronological age. Overall, this work provides new insights into the impact of aging on the skin volatile profiles which comprises both endogenously and exogenously derived volatile compounds. It goes toward demonstrating the biological significance of skin volatiles and will help pave the way for more rigorous consideration of the healthy "baseline" skin volatile profile in volatilomics-based health diagnostics development going forward.


Assuntos
Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Humanos , Análise Multivariada , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
2.
Anal Bioanal Chem ; 416(1): 37-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843549

RESUMO

The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
3.
Sensors (Basel) ; 23(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139506

RESUMO

The rapid expansion of 3D printing technologies has led to increased utilization in various industries and has also become pervasive in the home environment. Although the benefits are well acknowledged, concerns have arisen regarding potential health and safety hazards associated with emissions of volatile organic compounds (VOCs) and particulates during the 3D printing process. The home environment is particularly hazardous given the lack of health and safety awareness of the typical home user. This study aims to assess the safety aspects of 3D printing of PLA and ABS filaments by investigating emissions of VOCs and particulates, characterizing their chemical and physical profiles, and evaluating potential health risks. Gas chromatography-mass spectrometry (GC-MS) was employed to profile VOC emissions, while a particle analyzer (WIBS) was used to quantify and characterize particulate emissions. Our research highlights that 3D printing processes release a wide range of VOCs, including straight and branched alkanes, benzenes, and aldehydes. Emission profiles depend on filament type but also, importantly, the brand of filament. The size, shape, and fluorescent characteristics of particle emissions were characterized for PLA-based printing emissions and found to vary depending on the filament employed. This is the first 3D printing study employing WIBS for particulate characterization, and distinct sizes and shape profiles that differ from other ambient WIBS studies were observed. The findings emphasize the importance of implementing safety measures in all 3D printing environments, including the home, such as improved ventilation, thermoplastic material, and brand selection. Additionally, our research highlights the need for further regulatory guidelines to ensure the safe use of 3D printing technologies, particularly in the home setting.

4.
Langmuir ; 39(23): 8100-8108, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235552

RESUMO

Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.


Assuntos
Nanopartículas de Magnetita , Açúcares , Carboidratos , Glucose
5.
Talanta ; 258: 124434, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940572

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are highly toxic pollutants of significant concern as they are being detected in water, air, fish and soil. They are extremely persistent and accumulate in plant and animal tissues. Traditional methods of detection and removal of these substances use specialised instrumentation and require a trained technical resource for operation. Molecularly imprinted polymers (MIPs), polymeric materials with predetermined selectivity for a target molecule, have recently begun to be exploited in technologies for the selective removal and monitoring of PFAS in environmental waters. This review offers a comprehensive overview of recent developments in MIPs, both as adsorbents for PFAS removal and sensors that selectively detect PFAS at environmentally-relevant concentrations. PFAS-MIP adsorbents are classified according to their method of preparation (e.g., bulk or precipitation polymerization, surface imprinting), while PFAS-MIP sensing materials are described and discussed according to the transduction methods used (e.g., electrochemical, optical). This review aims to comprehensively discuss the PFAS-MIP research field. The efficacy and challenges facing the different applications of these materials in environmental water applications are discussed, as well as a perspective on challenges for this field that need to be overcome before exploitation of the technology can be fully realised.

6.
Metabolites ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35629935

RESUMO

Candida parapsiliosis is a prevalent neonatal pathogen that attains its virulence through its strain-specific ability to form biofilms. The use of volatilomics, the profiling of volatile metabolites from microbes is a non-invasive, simple way to identify and classify microbes; it has shown great potential for pathogen identification. Although C. parapsiliosis is one of the most common clinical fungal pathogens, its volatilome has never been characterised. In this study, planktonic volatilomes of ten clinical strains of C. parapsilosis were analysed, along with a single strain of Candida albicans. Headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry were employed to analyse the samples. Species-, strain-, and media- influences on the fungal volatilomes were investigated. Twenty-four unique metabolites from the examined Candida spp. (22 from C. albicans; 18 from C. parapsilosis) were included in this study. Chemical classes detected across the samples included alcohols, fatty acid esters, acetates, thiols, sesquiterpenes, and nitrogen-containing compounds. C. albicans volatilomes were most clearly discriminated from C. parapsilosis based on the detection of unique sesquiterpene compounds. The effect of biofilm formation on the C. parapsilosis volatilomes was investigated for the first time by comparing volatilomes of a biofilm-positive strain and a biofilm-negative strain over time (0-48 h) using a novel sampling approach. Volatilomic shifts in the profiles of alcohols, ketones, acids, and acetates were observed specifically in the biofilm-forming samples and attributed to biofilm maturation. This study highlights species-specificity of Candida volatilomes, and also marks the clinical potential for volatilomics for non-invasively detecting fungal pathogens. Additionally, the range of biofilm-specificity across microbial volatilomes is potentially far-reaching, and therefore characterising these volatilomic changes in pathogenic fungal and bacterial biofilms could lead to novel opportunities for detecting severe infections early.

7.
Front Microbiol ; 12: 693075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721314

RESUMO

Microbial volatilomics is a rapidly growing field of study and has shown great potential for applications in food, farming, and clinical sectors in the future. Due to the varying experimental methods and growth conditions employed in microbial volatilomic studies as well as strain-dependent volatilomic differences, there is limited knowledge regarding the stability of microbial volatilomes. Consequently, cross-study comparisons and validation of results and data can be challenging. In this study, we investigated the stability of the volatilomes of multiple strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli across three frequently used nutrient-rich growth media. Volatilomic stability was assessed based on media-, time- and strain-dependent variation across the examined bacterial volatilomes. Strain-level specificity of the observed volatilomes of E. coli and P. aeruginosa strains was further investigated by comparing the emission of selected compounds at varying stages of cell growth. Headspace solid phase microextraction (HS-SPME) sampling coupled with gas chromatography mass spectrometry (GC-MS) was used to analyze the volatilome of each strain. The whole volatilomes of the examined strains demonstrate a high degree of stability across the three examined growth media. At the compound-level, media dependent differences were observed particularly when comparing the volatilomes obtained in glucose-containing brain heart infusion (BHI) and tryptone soy broth (TSB) growth media with the volatilomes obtained in glucose-free Lysogeny broth (LB) media. These glucose-dependent volatilomic differences were primarily seen in the emission of primary metabolites such as alcohols, ketones, and acids. Strain-level differences in the emission of specific compounds in E. coli and P. aeruginosa samples were also observed across the media. These strain-level volatilomic differences were also observed across varying phases of growth of each strain, therefore confirming that these strains had varying core and accessory volatilomes. Our results demonstrate that, at the species-level, the examined bacteria have a core volatilome that exhibits a high-degree of stability across frequently-used growth media. Media-dependent differences in microbial volatilomes offer valuable insights into identifying the cellular origin of individual metabolites. The observed differences in the core and accessory volatilomes of the examined strains illustrate the complexity of microbial volatilomics as a study while also highlighting the need for more strain-level investigations to ultimately elucidate the whole volatilomic capabilities of microbial species in the future.

8.
PLoS One ; 16(10): e0258281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34614030

RESUMO

Indoor air quality monitoring as it relates to the domestic setting is an integral part of human exposure monitoring and health risk assessment. Hence there is a great need for easy to use, fast and economical indoor air quality sensors to monitor the volatile organic compound composition of the air which is known to be significantly perturbed by the various source emissions from activities in the home. To meet this need, paper-based colorimetric sensor arrays were deployed as volatile organic compound detectors in a field study aiming to understand which activities elicit responses from these sensor arrays in household settings. The sensor array itself is composed of pH indicators and aniline dyes that enable molecular recognition of carboxylic acids, amines and carbonyl-containing compounds. The sensor arrays were initially deployed in different rooms in a single household having different occupant activity types and levels. Sensor responses were shown to differ for different room settings on the basis of occupancy levels and the nature of the room emission sources. Sensor responses relating to specific activities such as cooking, cleaning, office work, etc were noted in the temporal response. Subsequently, the colorimetric sensor arrays were deployed in a broader study across 9 different households and, using multivariate analysis, the sensor responses were shown to correlate strongly with household occupant activity and year of house build. Overall, this study demonstrates the significant potential for this type of simple approach to indoor air pollution monitoring in residential environments.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Colorimetria , Compostos Orgânicos Voláteis/análise , Características da Família , Análise de Componente Principal
9.
Molecules ; 26(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34576972

RESUMO

Electrochemical stripping techniques are interesting candidates for carrying out onsite speciation of environmentally relevant trace metals due to the existing low-cost portable instrumentation available and the low detection limits that can be achieved. In this work, we describe the initial analytical technique method development by quantifying the total metal concentrations using Stripping Chronopotentiometry (SCP). Carbon paste screen-printed electrodes were modified with thin films of mercury and used to quantify sub-nanomolar concentrations of lead and cadmium and sub-micromolar concentrations of zinc in river water. Low detection limits of 0.06 nM for Pb(II) and 0.04 nM for Cd(II) were obtained by the standard addition method using a SCP deposition time of 180 s. The SCP results obtained for Pb(II) and Cd(II) agreed with those of inductively coupled plasma mass spectrometry (ICP-MS). The coupling of SCP with screen-printed electrodes opens up excellent potential for the development of onsite speciation of trace metals. Due to the low analysis throughput obtained for the standard addition method, we also propose a new, more rapid screening Cd(II) internal standard methodology to significantly increase the number of samples that can be analyzed per day.

10.
Sensors (Basel) ; 21(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067219

RESUMO

Consumer-level 3D printers are becoming increasingly prevalent in home settings. However, research shows that printing with these desktop 3D printers can impact indoor air quality (IAQ). This study examined particulate matter (PM) emissions generated by 3D printers in an indoor domestic setting. Print filament type, brand, and color were investigated and shown to all have significant impacts on the PM emission profiles over time. For example, emission rates were observed to vary by up to 150-fold, depending on the brand of a specific filament being used. Various printer settings (e.g., fan speed, infill density, extruder temperature) were also investigated. This study identifies that high levels of PM are triggered by the filament heating process and that accessible, user-controlled print settings can be used to modulate the PM emission from the 3D printing process. Considering these findings, a low-cost home IAQ sensor was evaluated as a potential means to enable a home user to monitor PM emissions from their 3D printing activities. This sensing approach was demonstrated to detect the timepoint where the onset of PM emission from a 3D print occurs. Therefore, these low-cost sensors could serve to inform the user when PM levels in the home become elevated significantly on account of this activity and furthermore, can indicate the time at which PM levels return to baseline after the printing process and/or after adding ventilation. By deploying such sensors at home, domestic users of 3D printers can assess the impact of filament type, color, and brand that they utilize on PM emissions, as well as be informed of how their selected print settings can impact their PM exposure levels.

11.
12.
ACS Omega ; 6(11): 7394-7401, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778252

RESUMO

Measurement of cooking-associated air pollution indoors is an integral part of exposure monitoring and human health risk assessment. There is a need for easy to use, fast, and economical detection systems to quantify the various emissions from different sources in the home. Addressing this challenge, a colorimetric sensor array (CSA) is reported as a new method to characterize volatile organic compounds produced from cooking, a major contributor to indoor air pollution. The sensor array is composed of pH indicators and aniline dyes from classical spot tests, which enabled molecular recognition of a variety of aldehydes, ketones, and carboxylic acids as demonstrated by hierarchical clustering and principal component analyses. To demonstrate the concept, these CSAs were employed for differentiation of emissions from heated cooking oils (sunflower, rapeseed, olive, and groundnut oils). Sensor results were validated by gas chromatography-mass spectrometry analysis, highlighting the potential of the sensor array for evaluating cooking emissions as a source of indoor air pollution.

13.
J Breath Res ; 15(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765666

RESUMO

Volatile organic compounds (VOCs) emitted from human skin are of great interest in general in research fields including disease diagnostics and comprise various compound classes including acids, alcohols, ketones and aldehydes. The objective of this research is to investigate the volatile fatty acid (VFA) emission as recovered from healthy participant skin VOC samples and to characterise its association with skin surface acidity. VOC sampling was performed via headspace-solid phase microextraction with analysis via gas chromatography-mass spectrometry. Several VFAs were recovered from participants, grouped based on gender and site (female forehead, female forearm, male forearm). Saturated VFAs (C9, C12, C14, C15, C16) and the unsaturated VFA C16:1 (recovered only from the female forehead) were considered for this study. VFA compositions and abundances are discussed in the context of body site and corresponding gland type and distribution, and their quantitative association with skin acidity investigated. Normalised chromatographic peak areas of the recovered VFAs were found to linearly correlate with hydrogen ion concentration measured at each of the different sites considered and is the first report to our knowledge to demonstrate such an association. Our observations are explained in terms of the free fatty acid content at the skin surface which is well-established as being a major contributor to skin surface acidity. Furthermore, it is interesting to consider that these VFA emissions from skin, governed by equilibrium vapour pressures exhibited at the skin surface, will be dependent on skin pH. It is proposed that these pH-modulated equilibrium vapour pressures of the acids could be resulting in an enhanced VFA emission sensitivity with respect to skin surface pH. To translate our observations made here for future wearable biodiagnostic applications, the measurement of skin surface pH based on the volatile emission was demonstrated using a pH indicator dye in the form of a planar colorimetric sensor, which was incorporated into a wearable platform and worn above the palm surface. As acidic skin surface pH is required for optimal skin barrier function and cutaneous antimicrobial defence, it is envisaged that these colorimetric volatile acid sensors could be deployed in robust wearable formats for monitoring health and disease applications in the future.


Assuntos
Testes Respiratórios , Compostos Orgânicos Voláteis , Ácidos Graxos Voláteis/análise , Feminino , Voluntários Saudáveis , Humanos , Masculino , Projetos Piloto , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
14.
Nanoscale ; 13(2): 1365-1366, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33406175

RESUMO

Correction for 'Electrostatically modulated magnetophoretic transport of functionalised iron-oxide nanoparticles through hydrated networks' by Stephen Lyons et al., Nanoscale, 2020, 12, 10550-10558, DOI: 10.1039/D0NR01602K.

15.
Sci Rep ; 10(1): 17971, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087843

RESUMO

The detection of volatile organic compounds (VOC) emitted by pathogenic bacteria has been proposed as a potential non-invasive approach for characterising various infectious diseases as well as wound infections. Studying microbial VOC profiles in vitro allows the mechanisms governing VOC production and the cellular origin of VOCs to be deduced. However, inter-study comparisons of microbial VOC data remains a challenge due to the variation in instrumental and growth parameters across studies. In this work, multiple strains of pathogenic and commensal cutaneous bacteria were analysed using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry. A kinetic study was also carried out to assess the relationship between bacterial VOC profiles and the growth phase of cells. Comprehensive bacterial VOC profiles were successfully discriminated at the species-level, while strain-level variation was only observed in specific species and to a small degree. Temporal emission kinetics showed that the emission of particular compound groups were proportional to the respective growth phase for individual S. aureus and P. aeruginosa samples. Standardised experimental workflows are needed to improve comparability across studies and ultimately elevate the field of microbial VOC profiling. Our results build on and support previous literature and demonstrate that comprehensive discriminative results can be achieved using simple experimental and data analysis workflows.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Pele/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Infecção dos Ferimentos/microbiologia , Bactérias/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Extração em Fase Sólida/métodos
16.
Burns ; 46(7): 1585-1602, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32475797

RESUMO

BACKGROUND: Burn injuries are a major cause of morbidity and mortality worldwide. Despite advances in therapeutic strategies for the management of patients with severe burns, the sequelae are pathophysiologically profound, up to the systemic and metabolic levels. Management of patients with a severe burn injury is a long-term, complex process, with treatment dependent on the degree and location of the burn and total body surface area (TBSA) affected. In adverse conditions with limited resources, efficient triage, stabilisation, and rapid transfer to a specialised intensive care burn centre is necessary to provide optimal outcomes. This initial lag time and the form of primary treatment initiated, from injury to specialist care, is crucial for the burn patient. This study aims to investigate the efficacy of a novel visco-elastic burn dressing with a proprietary bio-stimulatory marine mineral complex (MXC) as a primary care treatment to initiate a healthy healing process prior to specialist care. METHODS: A new versatile emergency burn dressing saturated in a >90% translucent water-based, sterile, oil-free gel and carrying a unique bio-stimulatory marine mineral complex (MXC) was developed. This dressing was tested using LabSkin as a burn model platform. LabSkin a novel cellular 3D-dermal organotypic full thickness human skin equivalent, incorporating fully-differentiated dermal and epidermal components that functionally models skin. Cell and molecular analysis was carried out by in vitro Real-Time Cellular Analysis (RTCA), thermal analysis, and focused transcriptomic array profiling for quantitative gene expression analysis, interrogating both wound healing and fibrosis/scarring molecular pathways. In vivo analysis was also performed to assess the bio-mechanical and physiological effects of this novel dressing on human skin. RESULTS: This hybrid emergency burn dressing (EBD) with MXC was hypoallergenic, and improved the barrier function of skin resulting in increased hydration up to 24 h. It was demonstrated to effectively initiate cooling upon application, limiting the continuous burn effect and preventing local tissue from damage and necrosis. xCELLigence RTCA® on primary human dermal cells (keratinocyte, fibroblast and micro-vascular endothelial) demonstrated improved cellular function with respect to tensegrity, migration, proliferation and cell-cell contact (barrier formation) [1]. Quantitative gene profiling supported the physiological and cellular function finding. A beneficial quid pro quo regulation of genes involved in wound healing and fibrosis formation was observed at 24 and 48 h time points. CONCLUSION: Utilisation of this EBD + MXC as a primary treatment is an effective and easily applicable treatment in cases of burn injury, proving both a cooling and hydrating environment for the wound. It regulates inflammation and promotes healing in preparation for specialised secondary burn wound management. Moreover, it promotes a healthy remodelling phenotype that may potentially mitigate scarring. Based on our findings, this EBD + MXC is ideal for use in all pre-hospital, pre-surgical and resource limited settings.


Assuntos
Curativos Hidrocoloides , Queimaduras , Cicatriz , Produtos Biológicos/uso terapêutico , Queimaduras/patologia , Queimaduras/terapia , Cicatriz/patologia , Humanos , Técnicas In Vitro , Pele/patologia , Cicatrização
17.
Talanta ; 216: 120955, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32456896

RESUMO

A cost-effective, automated and portable IC has been developed for in-situ analysis of nitrite and nitrate in natural waters. The system employed 3D printed pumps for eluent delivery and a deep-UV LED based optical detector. Isocratic separation and selective detection of nitrite and nitrate was achieved in under 3 min. The total weight of the analyser was ~11 kg, and included electronics along with a sample intake system for automated analysis. Linear calibration ranges were generated using different sample injection loops. Using a 150 µL loop, an analytical range (0.05-30 mg L-1 NO2-, 0.10-75 mg L-1 NO3-) suitable for freshwater analysis was generated, while using a 10 µL loop an analytical range (0.30-100 mg L-1 NO2-, 2.5-500 mg L-1 NO3-) suitable for effluent and domestic wastewater analysis was achieved. Chromatographic repeatability demonstrated by the system is graphically presented and RSD values of <4% were obtained in terms of peak area and retention time over 82 sequential runs. The system was deployed in-situ at multiple sites for varying deployment periods analysing septic tank water, effluent from a waste water treatment plant and stream water. The data generated by the in-situ system were comparable to grab sample data generated by accredited laboratory instrumentation.

18.
Nanoscale ; 12(19): 10550-10558, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32159560

RESUMO

Factors that determine magnetophoretic transport of magnetic nanoparticles (MNPs) through hydrated polymer networks under the influence of an external magnetic field gradient were studied. Functionalised iron oxide cores (8.9 nm core diameter) were tracked in real-time as they moved through agarose gels under the influence of an inhomogeneous magnetic field. Terminal magnetophoretic velocities were observed in all cases, these were quantified and found to be highly reproducible and sensitive to the conditions. Increasing agarose content reduced magnetophoretic velocity, we attribute this to increasingly tortuous paths through the porous hydrated polymer network and propose a new factor to quantify the tortuosity. The impact of MNP surface functionalisation, charge, network fixed charge content, and ionic strength of the aqueous phase on velocity were studied to separate these effects. For MNPs functionalised with polyethylene glycol (PEG) increasing chain length reduced velocity but the tortuosity extracted, which is a function of the network, was unchanged; validating the approach. For charged citrate- and arginine-functionalised MNPs, magnetophoretic velocities were found to increase for particles with positive and decrease for particles with negative zeta potential. In both cases these effects could be moderated by reducing the number of agarose anionic residues and/or increasing the ionic strength of the aqueous phase; conditions under which tortuosity again becomes the critical factor. A model for MNP transport identifying the contributions from the tortuous pore network and from electrostatic effects associated with the pore constrictions is proposed.

19.
Anal Chim Acta ; 1098: 94-101, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31948591

RESUMO

A multi-material 3D printed microfluidic reactor with integrated heating is presented, which was applied within a manifold for the colorimetric determination of ammonium in natural waters. Graphene doped polymer was used to provide localised heating when connected to a power source, achieving temperatures of up to 120 °C at 12 V, 0.7 A. An electrically insulating layer of acrylonitrile butadiene styrene (ABS) polymer or a new microdiamond-ABS polymer composite was used as a heater coating. The microdiamond polymer composite provided higher thermal conductivity and uniform heating of the serpentine microreactor which resulted in greater temperature control and accuracy in comparison to pure ABS polymer. The developed heater was then applied and demonstrated using a modified Berthelot reaction for ammonium analysis, in which the microreactor was configured at a predetermined optimised temperature. A 5-fold increase in reaction speed was observed compared to previously reported reaction rates. A simple flow injection analysis set up, comprising the microfluidic heater along with an LED-photodiode based optical detector, was assembled for ammonium analysis. Two river water samples and two blind ammonium standards were analysed and estimated concentrations were compared to concentrations determined using benchtop IC. The highest relative error observed following the analysis of the environmental samples was 11% and for the blind standards was 5%.

20.
J Chromatogr A ; 1603: 8-14, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31151694

RESUMO

A low cost, UV absorbance detector incorporating a 235 nm light emitting diode (LED) for portable ion chromatography has been designed and fabricated to achieve rapid, selective detection of nitrite and nitrate in natural waters. The optical cell was fabricated through micromilling and solvent vapour bonding of two layers of poly (methyl methacrylate) (PMMA). The cell was fitted within a 3D printed housing and the LED and photodiode were aligned using 3D printed holders. Isocratic separation and selective detection of nitrite and nitrate was achieved in under 2.5 min using the 235 nm LED based detector and custom electronics. The design of the new detector assembly allowed for effective and sustained operation of the deep UV LED source at a low current (<10 mA), maintaining consistent and low LED temperatures during operation, eliminating the need for a heat sink. The detector cell was produced at a fraction of the cost of commercial optical cells and demonstrated very low stray light (0.01%). For retention time and peak area repeatability, RSD values ranged from 0.75 to 1.10 % and 3.06-4.19 %, respectively. Broad dynamic linear ranges were obtained for nitrite and nitrate, with limits of detection at ppb levels. The analytical performance of the IC set up with optical cell was compared to that of an ISO-accredited IC through the analysis of five various water samples. Relative errors not exceeding 6.86% were obtained for all samples. The detector was also coupled to a low pressure, low cost syringe pump to assess the potential for use within a portable analytical system. RSD values for retention time and peak area using this simple configuration were <1.15% and <3.57% respectively, highlighting repeatability values comparable to those in which a commercial HPLC pump was used.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Nitratos/análise , Nitritos/análise , Cromatografia Líquida de Alta Pressão/métodos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...