Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895426

RESUMO

In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.

2.
Cell ; 186(12): 2556-2573.e22, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236194

RESUMO

In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.


Assuntos
Proteínas de Drosophila , Receptores Odorantes , Animais , Feminino , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Sexual Animal/fisiologia , Receptores Odorantes/metabolismo , Feromônios/metabolismo , Olfato/fisiologia , Drosophila/metabolismo , Mamíferos/metabolismo
3.
Evolution ; 75(12): 3191-3202, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34383301

RESUMO

How an organism's sensory system functions is central to how it navigates its environment. The insect olfactory system is a prominent model for investigating how ecological factors impact sensory reception and processing. Notably, work in Lepidoptera led to the discovery of vastly expanded structures, termed macroglomerular complexes (MGCs), within the primary olfactory processing centre. MGCs typically process pheromonal cues, are usually larger in males, and provide classic examples of how variation in the size of neural structures reflects the importance of sensory cues. Though prevalent across moths, MGCs were lost during the origin of butterflies, consistent with evidence that courtship initiation in butterflies is primarily reliant on visual cues, rather than long distance chemical signals. However, an MGC was recently described in a species of ithomiine butterfly, suggesting that this once lost neural adaptation has re-emerged in this tribe. Here, we show that MGC-like morphologies are widely distributed across ithomiines, but vary in both their structure and prevalence of sexual dimorphism. Based on this interspecific variation we suggest that the ithomiine MGC is involved in processing both plant and pheromonal cues, which have similarities in their chemical constitution, and co-evolved with an increased importance of plant derived chemical compounds.


Assuntos
Borboletas , Mariposas , Animais , Insetos , Masculino , Feromônios , Olfato
4.
Curr Opin Insect Sci ; 42: 55-60, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979531

RESUMO

Butterflies display incredible ecological and behavioural diversity. As such, they have been subject to intense study since the birth of evolutionary biology. However, with some possible exceptions, they are underused models in comparative and functional neurobiology. We highlight a series of areas, spanning sensory ecology to cognition, in which butterflies are particularly promising systems for investigating the neurobiological basis for behavioural or ecological variation. These fields benefit from a history of molecular and quantitative genetics, and basic comparative neuroanatomy, but these strands of research are yet to be widely integrated. We discuss areas for potential growth and argue that new experimental techniques, growing genomic resources, and tools for functional genetics will accelerate the use of butterflies in neurobiology.


Assuntos
Adaptação Biológica , Borboletas/fisiologia , Percepção/fisiologia , Comunicação Animal , Animais , Encéfalo/fisiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...