Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 13(7): 1639-1646, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30742058

RESUMO

Stable soils provide valuable ecosystem services and mechanical soil stability is enhanced by the presence of arbuscular mycorrhizal fungi (AMF). Soil aggregation, which is the major driver of mechanical soil stability, is often treated as a static phenomenon, even though aggregate turnover is continually ongoing. In fact, some breakdown of macroaggregates is necessary to allow new aggregate formation and inclusion of new organic matter into microaggregates. We determined how aggregate turnover times were affected by AMF by tracking movement of rare earth elements (REE), applied as their immobile oxides, between aggregate size classes, and using X-ray fluorescence microscopy to spatially localize REEs in a sample of aggregates. Here we show that AMF increased large macroaggregate formation and slowed down disintegration of large and small macroaggregates. Microaggregate turnover was increased in the presence of AMF. Internal aggregate organization suggested that although formation of microaggregates by accretion of soil to particulate organic matter is common, it is not the only mechanism in operation.


Assuntos
Micorrizas/metabolismo , Microbiologia do Solo , Solo/química , Carbono/metabolismo , Ecossistema , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento
2.
Science ; 326(5951): 411-4, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19729617

RESUMO

Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.

3.
Nature ; 445(7128): 631-4, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17287806

RESUMO

Sodium cobaltate (Na(x)CoO2) has emerged as a material of exceptional scientific interest due to the potential for thermoelectric applications, and because the strong interplay between the magnetic and superconducting properties has led to close comparisons with the physics of the superconducting copper oxides. The density x of the sodium in the intercalation layers can be altered electrochemically, directly changing the number of conduction electrons on the triangular Co layers. Recent electron diffraction measurements reveal a kaleidoscope of Na+ ion patterns as a function of concentration. Here we use single-crystal neutron diffraction supported by numerical simulations to determine the long-range three-dimensional superstructures of these ions. We show that the sodium ordering and its associated distortion field are governed by pure electrostatics, and that the organizational principle is the stabilization of charge droplets that order long range at some simple fractional fillings. Our results provide a good starting point to understand the electronic properties in terms of a Hubbard hamiltonian that takes into account the electrostatic potential from the Na superstructures. The resulting depth of potential wells in the Co layer is greater than the single-particle hopping kinetic energy and as a consequence, holes preferentially occupy the lowest potential regions. Thus we conclude that the Na+ ion patterning has a decisive role in the transport and magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...