Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 83(6): 1339-47, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18028207

RESUMO

We adapted and tested a laboratory quantitative filter pad method and field-based microcosm method for estimating diffuse attenuation coefficients (K(d)) of ultraviolet radiation (UVR) for a wide range of stream optical environments (K(d320) = 3-44 m(-1)). Logistical difficulties of direct measurements of UVR attenuation have inhibited widespread monitoring of this important parameter in streams. Suspended sediment concentrations were manipulated in a microcosm, which was used to obtain direct measurements of diffuse attenuation. Dissolved and particulate absorption measurements of samples from the microcosm experiments were used to calibrate the laboratory method. Conditions sampled cover a range of suspended sediment (0-50 mg L(-1)) and dissolved organic carbon concentrations (1-4 mg L(-1)). We evaluated four models for precision and reproducibility in calculating particulate absorption and the optimal model was used in an empirical approach to estimate diffuse attenuation coefficients from total absorption coefficients. We field-tested the laboratory method by comparing laboratory-estimated and field-measured diffuse attenuation coefficients for seven sites on the main stem and 10 tributaries of the Lehigh River, eastern Pennsylvania, USA. The laboratory-based method described here affords widespread application, which will further our understanding of how stream optical environments vary spatially and temporally and consequently influence ecological processes in streams.


Assuntos
Rios , Raios Ultravioleta , Difusão , Pesquisa , Espectrofotometria
2.
Environ Sci Technol ; 41(21): 7356-62, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18044511

RESUMO

Mesocosm experiments in an optically transparent lake allow the manipulation of both dissolved organic carbon (DOC) and incident ultraviolet radiation (UVR) in order to study mercury reduction and emission processes. In the absence of UVR and the presence of visible light, mercury emission is very low (approximately0.3 ng/m2/h). When UVR is permitted in the mesocosm chambers, mercury emission increases, with emission rates ranging from 0.3 to 2.5 ng/m2/h. At concentrations between 1.5 and 2.5 mg/L DOC, mercury emission does not appear to depend on either the concentration or the optical properties of the DOC. In particular, the addition of 1.0 mg/L DOC from a nearby wetland to a photobleached mesocosm did not increase the emission of mercury. The similarities between mercury emission from highly photobleached 1.5 mg/L DOC and from terrestrially enriched 2.5 mg/L DOC suggest that the moieties responsible for mercury reduction are far in excess of that needed for mercury reduction. Using the measured flux rate of mercury from the water surface, we calculated a dissolved gaseous mercury (DGM) concentration thatwould need to be present to drive the emissive flux. The buildup of DGM was used to approximate a kinetic rate constant for the net mercury reduction in this system of approximately 0.17 h(-1), which is consistent with existing published values.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/efeitos da radiação , Carbono/análise , Água Doce , Mercúrio/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
3.
Ecol Appl ; 17(8): 2310-22, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18213971

RESUMO

The impact of the widely used herbicide glyphosate has been mainly studied in terrestrial weed control, laboratory bioassays, and field studies focusing on invertebrates, amphibians, and fishes. Despite the importance of phytoplankton and periphyton communities at the base of the aquatic food webs, fewer studies have investigated the effects of glyphosate on freshwater microbial assemblages. We assessed the effect of the commercial formulation Roundup using artificial earthen mesocosms. The herbicide was added at three doses: a control (without Roundup) and two treatments of 6 and 12 mg/L of the active ingredient (glyphosate). Estimates of the dissipation rate (k) were similar in the two treatments (half-lives of 5.77 and 7.37 d, respectively). The only two physicochemical parameters showing statistically significant differences between treatments and controls were the downward vertical spectral attenuation coefficient kd(lambda), where lambda is wavelength, and total phosphorus concentration (TP). At the end of the experiment, the treated mesocosms showed a significant increase in the ratio kd(490 nm)/k(d)(550 nm) and an eightfold increase in TP. Roundup affected the structure of phytoplankton and periphyton assemblages. Total micro- and nano-phytoplankton decreased in abundance in treated mesocosms. In contrast, the abundance of picocyanobacteria increased by a factor of about 40. Primary production also increased in treated mesocosms (roughly by a factor of two). Similar patterns were observed in the periphytic assemblages, which showed an increased proportion of dead: live individuals and increased abundances of cyanobacteria (about 4.5-fold). Interestingly, the observed changes in the microbial assemblages were captured by the analysis of the pigment composition of the phytoplankton, the phytoplankton absorption spectra, and the analysis of the optical properties of the water. The observed changes in the structure of the microbial assemblages are more consistent with a direct toxicological effect of glyphosate rather than an indirect effect mediated by phosphorus enrichment.


Assuntos
Bactérias/efeitos dos fármacos , Ecossistema , Água Doce/microbiologia , Glicina/análogos & derivados , Conservação dos Recursos Naturais , Eucariotos/efeitos dos fármacos , Água Doce/química , Glicina/análise , Glicina/toxicidade , Herbicidas , Fitoplâncton/efeitos dos fármacos , Pigmentos Biológicos , Fatores de Tempo , Poluentes Químicos da Água/toxicidade , Poluição Química da Água , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...