Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sports Sci ; 38(20): 2307-2313, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32552507

RESUMO

Body composition can substantially impact elite swimming performance. In practice, changes in fat and lean mass of elite swimmers are estimated using body mass, sum of seven skinfolds (∑7) and lean mass index (LMI). However, LMI may be insufficiently accurate to detect small changes in body composition which could meaningfully impact swimming performance. This study developed equations which estimate dual-energy x-ray absorptiometry (DXA)-derived lean and fat mass using body mass and ∑7 data. Elite Australian swimmers (n = 44; 18 male, 26 female) completed a DXA scan and standardised body mass and ∑7 measurements. Equations to estimate DXA-derived lean and fat mass based on body mass, ∑7 and sex were developed. The relationships between ∑7, body mass and DXA-derived lean and fat mass were non-linear. Fat mass (Adjusted R2 = 0.91; standard error = 1.0 kg) and lean mass (Adjusted R2 = 0.99; standard error = 1.0 kg) equations were considered sufficiently accurate. Lean mass estimates outperformed the LMI in identifying the correct direction of change in lean mass (82% correct; LMI 71%). Using the accurate estimations produced by these equations will enhance the prescription and evaluation of programmes to optimise the body composition and subsequent performance in swimmers.


Assuntos
Distribuição da Gordura Corporal/estatística & dados numéricos , Índice de Massa Corporal , Dobras Cutâneas , Natação/fisiologia , Absorciometria de Fóton , Adolescente , Adulto , Desempenho Atlético/fisiologia , Austrália , Feminino , Humanos , Masculino , Análise de Regressão , Adulto Jovem
2.
Int J Sports Physiol Perform ; 12(8): 1046-1051, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27967275

RESUMO

PURPOSE: The contributions of the limbs to velocity and metabolic parameters in front-crawl swimming at different intensities have not been identified considering both stroke and kick rate. Consequently, velocity, oxygen uptake (V̇O2), and metabolic cost of swimming with the whole body (swim), the upper limbs only (pull), and lower limbs only (kick) were compared with stroke and kick rate controlled. METHODS: Twenty elite swimmers completed six 200-m trials: 2 swim, 2 pull, and 2 kick. Swim trials were guided by underwater lights at paces equivalent to 65% ± 3% and 78% ± 3% of participants' 200-m-freestyle personal-best pace; paces were described as low and moderate, respectively. In the pull and kick trials, swimmers aimed to match the stroke and kick rates, respectively, recorded during the swim trials. V̇O2 was measured continuously, with velocity and metabolic cost calculated for each 200-m effort. RESULTS: The velocity contribution of the upper limbs (mean ± SD; low 63.9% ± 6.2%, moderate 59.6% ± 4.2%) was greater than that of the lower limbs to a large extent at both intensities (low ES = 4.40, moderate ES = 4.60). The V̇O2 used by the upper limbs differed between the intensities (low 55.5% ± 6.9%, moderate 51.4% ± 4.0%; ES = 0.74). The lower limbs were responsible for a greater percentage of the metabolic cost than the upper limbs at both intensities (low 56.1% ± 9.5%, ES = 1.30; moderate 55.1% ± 6.6%, ES = 1.55). CONCLUSIONS: Implementation of this testing protocol before and after a pull- or kick-training block will enable sport scientists to determine how the velocity contributions and/or metabolic cost of the upper- and lower-limb actions have responded to the training program.


Assuntos
Metabolismo Energético/fisiologia , Extremidade Inferior/fisiologia , Consumo de Oxigênio/fisiologia , Natação/fisiologia , Extremidade Superior/fisiologia , Fenômenos Biomecânicos , Estudos Transversais , Feminino , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Respiração , Estudos de Tempo e Movimento , Gravação em Vídeo , Adulto Jovem
3.
Eur J Appl Physiol ; 116(5): 1075-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27052972

RESUMO

PURPOSE: Stroke rate (SR) has not been considered in previous research examining the relative roles of the limbs in front-crawl performance. This study compared velocity, aerobic power ([Formula: see text]) and metabolic cost (C) between whole body (WB) and arms only (AO) front-crawl swimming across various intensities while controlling SR. METHODS: Twenty Australian national swimmers performed six 200 m front-crawl efforts under two conditions: (1) WB swimming and, (2) AO swimming. Participants completed the 200 m trials under three SR conditions: "low" (22-26 stroke-cycles min(-1)), "moderate" (30-34 stroke-cycles min(-1) and "high" (38-42 stroke-cycles min(-1)). [Formula: see text] was continuously measured, with C, velocity, SR, and kick rate calculated for each effort. RESULTS: Regardless of the SR condition and sex, AO velocity was consistently lower than WB velocity by ~11.0 % (p < 0.01). AO [Formula: see text] was lower than WB [Formula: see text] at all SR conditions for females (p < 0.01) and at the "high" SR for males (p < 0.01). C did not differ between WB and AO at any SR for both sexes (p > 0.01). When C was expressed as a function of velocity, WB and AO regression equations differed for males (p = 0.01) but not for females (p = 0.087). Kick rate increased as SR increased (p < 0.01), though the kick-to-stroke rate ratio remained constant. CONCLUSION: Elite swimmers gain ~11 % in velocity from their kick and, when used in conjunction with the arm stroke at the swimmers' preferred frequency, the metabolic cost of WB and AO swimming is the same. Coaches should consider these results when prescribing AO sets if their intention is to reduce the metabolic load.


Assuntos
Braço/patologia , Natação/fisiologia , Adulto , Austrália , Fenômenos Biomecânicos/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...