Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 11: 596632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329349

RESUMO

Magnetic nanoparticles (MNPs) have potential for enhancing drug delivery in selected cancer patients, including those which have cells that have disseminated within cerebrospinal fluid (CSF) pathways. Here, we present data related to the creation and in vitro use of new two-part MNPs consisting of magnetic gold-iron alloy cores which have streptavidin binding sites, and are coated with biotinylated etoposide. Etoposide was chosen due to its previous use in the CSF and ease of biotinylation. Etoposide magnetic nanoparticles ("Etop-MNPs") were characterized by several different methods, and moved at a distance by surface-walking of MNP clusters, which occurs in response to a rotating permanent magnet. Human cell lines including D283 (medulloblastoma), U138 (glioblastoma), and H2122 (lung adenocarcinoma) were treated with direct application of Etop-MNPs (and control particles), and after remote particle movement. Cell viability was determined by MTT assay and trypan blue exclusion. Results indicated that the biotinylated etoposide was successfully bound to the base MNPs, with the hybrid particle attaining a maximum velocity of 0.13 ± 0.018 cm/sec. Etop-MNPs killed cancer cells in a dose-dependent fashion, with 50 ± 6.8% cell killing of D283 cells (for example) with 24 h of treatment after remote targeting. U138 and H2122 cells were found to be even more susceptible to the killing effect of Etop-MNPs than D283 cells. These findings indicate that the novel Etop-MNPs have a cytotoxic effect, and can be moved relatively rapidly at physiologic distances, using a rotating magnet. While further testing is needed, intrathecal administration of Etop-MNPs holds promise for magnetically-enhanced eradication of cancer cells distributed within CSF pathways, particularly if given early in the course of the disease.

2.
Int J Nanomedicine ; 15: 1549-1568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210551

RESUMO

BACKGROUND: Thrombotic events continue to be a major cause of morbidity and mortality worldwide. Tissue plasminogen activator (tPA) is used for the treatment of acute ischemic stroke and other thrombotic disorders. Use of tPA is limited by its narrow therapeutic time window, hemorrhagic complications, and insufficient delivery to the location of the thrombus. Magnetic nanoparticles (MNPs) have been proposed for targeting tPA delivery. It would be advantageous to develop an improved in vitro model of clot formation, to screen thrombolytic therapies that could be enhanced by addition of MNPs, and to test magnetic drug targeting at human-sized distances. METHODS: We utilized commercially available blood and endothelial cells to construct 1/8th inch (and larger) biomimetic vascular channels in acrylic trays. MNP clusters were moved at a distance by a rotating permanent magnet and moved along the channels by surface walking. The effect of different transport media on MNP velocity was studied using video photography. MNPs with and without tPA were analyzed to determine their velocities in the channels, and their fibrinolytic effect in wells and the trays. RESULTS: MNP clusters could be moved through fluids including blood, at human-sized distances, down straight or branched channels, using the rotating permanent magnet. The greatest MNP velocity was closest to the magnet: 0.76 ± 0.03 cm/sec. In serum, the average MNP velocity was 0.10 ± 0.02 cm/sec. MNPs were found to enhance tPA delivery, and cause fibrinolysis in both static and dynamic studies. Fibrinolysis was observed to occur in 85% of the dynamic MNP + tPA experiments. CONCLUSION: MNPs hold great promise for use in augmenting delivery of tPA for the treatment of stroke and other thrombotic conditions. This model system facilitates side by side comparisons of MNP-facilitated drug delivery, at a human scale.


Assuntos
Biomimética/métodos , Fibrinolíticos/farmacocinética , Nanopartículas de Magnetita/análise , Ativador de Plasminogênio Tecidual/administração & dosagem , Animais , Biomimética/instrumentação , Sistemas de Liberação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Desenho de Equipamento , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Coelhos , Trombose/tratamento farmacológico , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...