Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Ecol Lett ; 27(3): e14417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549264

RESUMO

Life table response experiments (LTREs) decompose differences in population growth rate between environments into separate contributions from each underlying demographic rate. However, most LTRE analyses make the unrealistic assumption that the relationships between demographic rates and environmental drivers are linear and independent, which may result in diminished accuracy when these assumptions are violated. We extend regression LTREs to incorporate nonlinear (second-order) terms and compare the accuracy of both approaches for three previously published demographic datasets. We show that the second-order approach equals or outperforms the linear approach for all three case studies, even when all of the underlying vital rate functions are linear. Nonlinear vital rate responses to driver changes contributed most to population growth rate responses, but life history changes also made substantial contributions. Our results suggest that moving from linear to second-order LTRE analyses could improve our understanding of population responses to changing environments.


Assuntos
Crescimento Demográfico , Tábuas de Vida , Dinâmica Populacional
2.
Am Nat ; 203(3): 393-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358814

RESUMO

AbstractIn cooperative breeding systems, inclusive fitness theory predicts that nonbreeding helpers more closely related to the breeders should be more willing to provide costly alloparental care and thus have more impact on breeder fitness. In the red-cockaded woodpecker (Dryobates borealis), most helpers are the breeders' earlier offspring, but helpers do vary within groups in both relatedness to the breeders (some even being unrelated) and sex, and it can be difficult to parse their separate impacts on breeder fitness. Moreover, most support for inclusive fitness theory has been positive associations between relatedness and behavior rather than actual fitness consequences. We used functional linear models to evaluate the per capita effects of helpers of different relatedness on eight breeder fitness components measured for up to 41 years at three sites. In support of inclusive fitness theory, helpers more related to the breeding pair made greater contributions to six fitness components. However, male helpers made equal contributions to increasing prefledging survival regardless of relatedness. These findings suggest that both inclusive fitness benefits and other direct benefits may underlie helping behaviors in the red-cockaded woodpecker. Our results also demonstrate the application of an underused statistical approach to disentangle a complex ecological phenomenon.


Assuntos
Comportamento Cooperativo , Comportamento de Ajuda , Animais , Masculino , Aves , Reprodução
3.
Plant Environ Interact ; 4(2): 97-113, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37288163

RESUMO

Danthonia californica Bolander (Poaceae)is a native perennial bunchgrass commonly used in the restoration of prairie ecosystems in the western United States. Plants of this species simultaneously produce both chasmogamous (potentially outcrossed) and cleistogamous (obligately self-fertilized) seeds. Restoration practitioners almost exclusively use chasmogamous seeds for outplanting, which are predicted to perform better in novel environments due to their greater genetic diversity. Meanwhile, cleistogamous seeds may exhibit greater local adaptation to the conditions in which the maternal plant exists. We performed a common garden experiment at two sites in the Willamette Valley, Oregon, to assess the influence of seed type and source population (eight populations from a latitudinal gradient) on seedling emergence and found no evidence of local adaptation for either seed type. Cleistogamous seeds outperformed chasmogamous seeds, regardless of whether seeds were sourced directly from the common gardens (local seeds) or other populations (nonlocal seeds). Furthermore, average seed weight had a strong positive effect on seedling emergence, despite the fact that chasmogamous seeds had significantly greater mass than cleistogamous seeds. At one common garden, we observed that seeds of both types sourced from north of our planting site performed significantly better than local or southern-sourced seeds. We also found a significant seed type and distance-dependent interaction, with cleistogamous seedling emergence peaking approximately 125 km from the garden. These results suggest that cleistogamous seeds should be considered for greater use in D. californica restoration.

4.
Am J Bot ; 110(6): e16158, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37040609

RESUMO

PREMISE: Pollen-rewarding plants face two conflicting constraints: They must prevent consumptive emasculation while remaining attractive to pollen-collecting visitors. Small pollen packages (the quantity of pollen available in a single visit) may discourage visitors from grooming (reducing consumptive loss) but may also decrease a plant's attractiveness to pollen-collecting visitors. What package size best balances these two constraints? METHODS: We modeled the joint effects of pollinators' grooming behaviors and package size preferences on the optimal package size (i.e., the size that maximizes pollen donation). We then used this model to examine Darwin's conjecture that selection should favor increased pollen production in pollen-rewarding plants. RESULTS: When package size preferences are weak, minimizing package size reduces grooming losses and should be favored (as in previous theoretical studies). Stronger preferences select for larger packages despite the associated increase to grooming loss because loss associated with nonremoval of smaller packages is even greater. Total pollen donation increases with production (as Darwin suggested). However, if floral visitation declines or packages size preference increases with overall pollen availability, the fraction of pollen donated may decline as per-plant pollen production increases. Hence, increasing production may result in diminishing returns. CONCLUSIONS: Pollen-rewarding plants can balance conflicting constraints on pollen donation by producing intermediate-sized pollen packages. Strictly pollen-rewarding plants may have responded to past selection to produce more pollen in total, but diminishing returns may limit the strength of that selection.


Assuntos
Flores , Polinização , Animais , Reprodução , Plantas , Pólen , Recompensa
5.
Evol Appl ; 15(11): 1888-1906, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426131

RESUMO

Quantifying relationships between genetic variation and population viability is important from both basic biological and applied conservation perspectives, yet few populations have been monitored with both long-term demographic and population genetics approaches. To empirically test whether and how genetic variation and population dynamics are related, we present one such paired approach. First, we use eight years of historical demographic data from five populations of Boechera fecunda (Brassicaceae), a rare, self-compatible perennial plant endemic to Montana, USA, and use integral projection models to estimate the stochastic population growth rate (λ S) and extinction risk of each population. We then combine these demographic estimates with previously published metrics of genetic variation in the same populations to test whether genetic diversity within populations is linked to demographic performance. Our results show that in this predominantly inbred species, standing genetic variation and demography are weakly positively correlated. However, the inbreeding coefficient was not strongly correlated with demographic performance, suggesting that more inbred populations are not necessarily less viable or at higher extinction risk than less inbred populations. A contemporary re-census of these populations revealed that neither genetic nor demographic parameters were consistently strong predictors of current population density, although populations showing lower probabilities of extinction in demographic models had larger population sizes at present. In the absence of evidence for inbreeding depression decreasing population viability in this species, we recommend conservation of distinct, potentially locally adapted populations of B. fecunda rather than alternatives such as translocations or reintroductions.

7.
Ecology ; 102(10): e03464, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34236709

RESUMO

With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer-than-ambient experimental conditions and may require more frequent disturbance intervention to sustain populations. Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals' persistence, but even such efforts may prove futile under future climate regimes.


Assuntos
Mudança Climática , Plantas , Adaptação Fisiológica , Germinação , Temperatura
8.
Ecol Appl ; 31(2): e2242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098736

RESUMO

Spatial gradients in population growth, such as across latitudinal or elevational gradients, are often assumed to primarily be driven by variation in climate, and are frequently used to infer species' responses to climate change. Here, we use a novel demographic, mixed-model approach to dissect the contributions of climate variables vs. other latitudinal or local site effects on spatiotemporal variation in population performance in three perennial bunchgrasses. For all three species, we find that performance of local populations decreases with warmer and drier conditions, despite latitudinal trends of decreasing population growth toward the cooler and wetter northern portion of each species' range. Thus, latitudinal gradients in performance are not predictive of either local or species-wide responses to climate. This pattern could be common, as many environmental drivers, such as habitat quality or species' interactions, are likely to vary with latitude or elevation, and thus influence or oppose climate responses.


Assuntos
Mudança Climática , Crescimento Demográfico , Ecossistema
9.
Proc Natl Acad Sci U S A ; 117(2): 1107-1112, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31888999

RESUMO

Multiple, simultaneous environmental changes, in climatic/abiotic factors, interacting species, and direct human influences, are impacting natural populations and thus biodiversity, ecosystem services, and evolutionary trajectories. Determining whether the magnitudes of the population impacts of abiotic, biotic, and anthropogenic drivers differ, accounting for their direct effects and effects mediated through other drivers, would allow us to better predict population fates and design mitigation strategies. We compiled 644 paired values of the population growth rate (λ) from high and low levels of an identified driver from demographic studies of terrestrial plants. Among abiotic drivers, natural disturbance (not climate), and among biotic drivers, interactions with neighboring plants had the strongest effects on λ However, when drivers were combined into the 3 main types, their average effects on λ did not differ. For the subset of studies that measured both the average and variability of the driver, λ was marginally more sensitive to 1 SD of change in abiotic drivers relative to biotic drivers, but sensitivity to biotic drivers was still substantial. Similar impact magnitudes for abiotic/biotic/anthropogenic drivers hold for plants of different growth forms, for different latitudinal zones, and for biomes characterized by harsher or milder abiotic conditions, suggesting that all 3 drivers have equivalent impacts across a variety of contexts. Thus, the best available information about the integrated effects of drivers on all demographic rates provides no justification for ignoring drivers of any of these 3 types when projecting ecological and evolutionary responses of populations and of biodiversity to environmental changes.


Assuntos
Biodiversidade , Mudança Climática , Desenvolvimento Vegetal , Crescimento Demográfico , Clima , Ecologia , Ecossistema , Humanos , Fenômenos Fisiológicos Vegetais , Plantas
10.
Ecology ; 100(4): e02639, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710357

RESUMO

Population-wide outcomes such as abundance, reproductive output, or mean survival can be stabilized by non-synchronous variation in the performance of individuals or subpopulations. Such "portfolio effects" have been increasingly documented at the scale of subpopulations and are thought to play an important role in generating stability of population phenomena in the face of environmental variation. However, few studies quantify the strength and origin of portfolio effects at the finer scale of individuals. We used 16 yr of fruit production and climate data for an alpine plant to dissect the scale of portfolio effects in reproduction, as well as the contribution of individual traits including size and flowering time in driving reproductive output. Asynchrony in reproductive success substantially reduces variation in population-level reproductive output, with approximately one-fourth of this stabilizing effect arising from individual differences, mostly not those characterized by measured traits, and approximately three-fourths from asynchrony across subpopulations. These results emphasize the different scales and causes of portfolio effects. The decomposition for portfolio effects we provide can facilitate similar breakdowns of the strength and causes of these effects in other systems.


Assuntos
Fertilidade , Reprodução , Clima , Fenótipo , Plantas
11.
Glob Chang Biol ; 25(3): 775-793, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30597712

RESUMO

Populations of many species are genetically adapted to local historical climate conditions. Yet most forecasts of species' distributions under climate change have ignored local adaptation (LA), which may paint a false picture of how species will respond across their geographic ranges. We review recent studies that have incorporated intraspecific variation, a potential proxy for LA, into distribution forecasts, assess their strengths and weaknesses, and make recommendations for how to improve forecasts in the face of LA. The three methods used so far (species distribution models, response functions, and mechanistic models) reflect a trade-off between data availability and the ability to rigorously demonstrate LA to climate. We identify key considerations for incorporating LA into distribution forecasts that are currently missing from many published studies, including testing the spatial scale and pattern of LA, the confounding effects of LA to nonclimatic or biotic drivers, and the need to incorporate empirically based dispersal or gene flow processes. We suggest approaches to better evaluate these aspects of LA and their effects on species-level forecasts. In particular, we highlight demographic and dynamic evolutionary models as promising approaches to better integrate LA into forecasts, and emphasize the importance of independent model validation. Finally, we urge closer examination of how LA will alter the responses of central vs. marginal populations to allow stronger generalizations about changes in distribution and abundance in the face of LA.


Assuntos
Adaptação Fisiológica , Mudança Climática , Dinâmica Populacional/tendências , Variação Biológica da População , Previsões , Modelos Biológicos , Análise Espacial
12.
Oecologia ; 189(1): 243-253, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30467597

RESUMO

Predictions of plant responses to global warming frequently ignore biotic interactions and intraspecific variation across geographical ranges. Benefactor species play an important role in plant communities by protecting other taxa from harsh environments, but the combined effects of warming and beneficiary species on their performance have been largely unexamined. We analyzed the joint effects of elevated temperature and neighbor removal on the benefactor plant Silene acaulis, in factorial experiments near its low- and high-latitude range limits in Europe. We recorded growth, probability of reproduction and fruit set during 3 years. The effects of enhanced temperature were positive near the northern limit and negative in the south for some performance measures. This pattern was stronger in the presence of neighbors, possibly due to differential thermal tolerances between S. acaulis and beneficiary species in each location. Neighbors generally had a negative or null impact on S. acaulis, in agreement with previous reviews of overall effects of plant-plant interactions on benefactors. However, small S. acaulis individuals in the north showed higher growth when surrounded by neighbors. Finally, the local habitat within each location influenced some effects of experimental treatments. Overall, we show that plant responses to rising temperatures may strongly depend on their position within the geographic range, and on species interactions. Our results also highlight the need to consider features of the interacting taxa, such as whether they are benefactor species, as well as local-scale environmental variation, to predict the joint effects of global warming and biotic interactions on species and communities.


Assuntos
Plantas , Silene , Clima , Ecossistema , Europa (Continente)
13.
Proc Natl Acad Sci U S A ; 115(3): 543-548, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284748

RESUMO

Predicting how species' abundances and ranges will shift in response to climate change requires a mechanistic understanding of how multiple factors interact to limit population growth. Both abiotic stress and species interactions can limit populations and potentially set range boundaries, but we have a poor understanding of when and where each is most critical. A commonly cited hypothesis, first proposed by Darwin, posits that abiotic factors (e.g., temperature, precipitation) are stronger determinants of range boundaries in apparently abiotically stressful areas ("stress" indicates abiotic factors that reduce population growth), including desert, polar, or high-elevation environments, whereas species interactions (e.g., herbivory, competition) play a stronger role in apparently less stressful environments. We tested a core tenet of this hypothesis-that population growth rate is more strongly affected by species interactions in less stressful areas-using experimental manipulations of species interactions affecting a common herbaceous plant, Hibiscus meyeri (Malvaceae), across an aridity gradient in a semiarid African savanna. Population growth was more strongly affected by four distinct species interactions (competition with herbaceous and shrubby neighbors, herbivory, and pollination) in less stressful mesic areas than in more stressful arid sites. However, contrary to common assumptions, this effect did not arise because of greater density or diversity of interacting species in less stressful areas, but rather because aridity reduced sensitivity of population growth to these interactions. Our work supports classic predictions about the relative strength of factors regulating population growth across stress gradients, but suggests that this pattern results from a previously unappreciated mechanism that may apply to many species worldwide.


Assuntos
Ecossistema , Hibiscus/crescimento & desenvolvimento , África , Animais , Mudança Climática , Clima Desértico , Herbivoria/fisiologia , Hibiscus/química , Hibiscus/fisiologia , Cinética
14.
Ecol Appl ; 28(2): 356-372, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29164716

RESUMO

Many populations exhibit boom-bust dynamics in which abundance fluctuates dramatically over time. Past research has focused on identifying whether the cause of fluctuations is primarily exogenous, e.g., environmental stochasticity coupled with weak density dependence, or endogenous, e.g., over-compensatory density dependence. Far fewer studies have addressed whether the mechanism responsible for boom-bust dynamics matters with respect to at-risk species management. Here, we ask whether the best strategy for restoring habitat across a landscape differs under exogenously vs. endogenously driven boom-bust dynamics. We used spatially explicit individual-based models to assess how butterfly populations governed by the two mechanisms would respond to habitat restoration strategies that varied in the level of resource patchiness, from a single large patch to multiple patches spaced at different distances. Our models showed that the restoration strategy that minimized extinction risk and boom-bust dynamics would be markedly different depending on the governing mechanism. Exogenously governed populations fared best in a single large habitat patch, whereas for endogenously driven populations, boom-bust dynamics were dampened and extinction risk declined when the total restored area was split into multiple patches with low to moderate inter-patch spacing. Adding environmental stochasticity to the endogenous model did not alter this result. Habitat fragmentation lowered extinction risk in the endogenously driven populations by reducing their growth rate, precluding both "boom" phases and, more importantly, "bust" phases. Our findings suggest that (1) successful restoration will depend on understanding the causes of fluctuations in at-risk populations, (2) the level and pattern of spatiotemporal environmental heterogeneity will also affect the ideal management approach, and (3) counterintuitively, for at-risk species with endogenously governed boom-bust dynamics, lowering the intrinsic population growth rate may decrease extinction risk.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Modelos Biológicos , Animais , Borboletas , Dinâmica Populacional , Washington
15.
Glob Chang Biol ; 24(4): 1614-1625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29155464

RESUMO

Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species' abundance and distribution.


Assuntos
Adaptação Fisiológica , Mudança Climática , Silene/fisiologia , Tundra , Biodiversidade , América do Norte , Estações do Ano , Temperatura
16.
Glob Chang Biol ; 23(11): 4907-4921, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28589633

RESUMO

Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.


Assuntos
Mudança Climática , Primatas/fisiologia , Animais , Demografia , Dinâmica Populacional
17.
Biol Rev Camb Philos Soc ; 92(1): 22-42, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26290132

RESUMO

While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention.


Assuntos
Evolução Biológica , Mudança Climática , Ecologia , Temperatura
18.
Sci Data ; 3: 160006, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928014

RESUMO

We provide male and female census count data, age-specific survivorship, and female age-specific fertility estimates for populations of seven wild primates that have been continuously monitored for at least 29 years: sifaka (Propithecus verreauxi) in Madagascar; muriqui (Brachyteles hypoxanthus) in Brazil; capuchin (Cebus capucinus) in Costa Rica; baboon (Papio cynocephalus) and blue monkey (Cercopithecus mitis) in Kenya; chimpanzee (Pan troglodytes) in Tanzania; and gorilla (Gorilla beringei) in Rwanda. Using one-year age-class intervals, we computed point estimates of age-specific survival for both sexes. In all species, our survival estimates for the dispersing sex are affected by heavy censoring. We also calculated reproductive value, life expectancy, and mortality hazards for females. We used bootstrapping to place confidence intervals on life-table summary metrics (R0, the net reproductive rate; λ, the population growth rate; and G, the generation time). These data have high potential for reuse; they derive from continuous population monitoring of long-lived organisms and will be invaluable for addressing questions about comparative demography, primate conservation and human evolution.


Assuntos
Tábuas de Vida , Primatas , África , Fatores Etários , Animais , Coeficiente de Natalidade , Brasil , Costa Rica , Feminino , Madagáscar , Masculino , Filipinas , Fatores Sexuais
19.
Ecol Lett ; 18(11): 1139-1152, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355390

RESUMO

Most species are exposed to significant environmental gradients across their ranges, but vital rates (survival, growth, reproduction and recruitment) need not respond in the same direction to those gradients. Opposing vital rate trends across environments, a phenomenon that has been loosely called 'demographic compensation', may allow species to occupy larger geographical ranges and alter their responses to climate change. Yet the term has never been precisely defined, nor has its existence or strength been assessed for multiple species. Here, we provide a rigorous definition, and use it to develop a strong test for demographic compensation. By applying the test to data from 26 published, multi-population demographic studies of plants, we show that demographic compensation commonly occurs. We also investigate the mechanisms by which this phenomenon arises by assessing which demographic processes and life stages are most often involved. In addition, we quantify the effect of demographic compensation on variation in population growth rates across environmental gradients, a potentially important determinant of the size of a species' geographical range. Finally, we discuss the implications of demographic compensation for the responses of single populations and species' ranges to temporal environmental variation and to ongoing environmental trends, e.g. due to climate change.

20.
Oecologia ; 179(2): 435-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26003308

RESUMO

The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.


Assuntos
Formigas/fisiologia , Comportamento Animal , Cactaceae/crescimento & desenvolvimento , Animais , Frutas/crescimento & desenvolvimento , Herbivoria , Dinâmica Populacional , Crescimento Demográfico , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...