Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 95(12): e10964, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38124406

RESUMO

Duckweed species (Lemnaceae) are suitable for remediation and valorization of agri-feed industry wastewaters and therefore can contribute to a more sustainable, circular economy where waste is a resource. Industrial applications will, however, require space efficient cultivation methods that are not affected by prevailing weather conditions. Here, the development and operation of a multi-tiered duckweed bioreactor is described. The developed prototype bioreactor depicted in this paper is composed of four cultivation layers (1 m2 each) with integrated LED lighting (generating up to 150 µmol m-2  s-1 ), a system of pumps and valves to manage the recirculatory flow (2.5 L min-1 ) of wastewater, and an automatic harvesting system. Using a nutrient poor medium, good growth of the duckweed species Lemna minor was achieved in the bioreactor, and this was matched by strong nutrient depletion from the medium, especially for phosphorus (45-mg total phosphorus [TP] removed per m-2  day-1 ). A fully automatic harvesting arm reliably captured similar amounts of duckweed biomass across multiple harvesting cycles, revealing a future scenario whereby labor and interventions by human operators are minimized. Further developments to advance the system towards fully automated operation will include, for example, the use of specific nutrient sensors to monitor and control medium composition. It is envisaged that multi-tiered, indoor bioreactors can be employed in the agri-feed industry where wastewaters are, in many cases, continuously generated throughout the year and need remediating immediately to avoid costly storage. Given the extensive use of automation technology in conventional wastewater treatment plants, multi-tiered duckweed bioreactors can be realistically integrated within the operating environment of such treatment plants. PRACTITIONER POINTS: Duckweed is suitable for remediation and valorization of agri-feed wastewater. Industrial duckweed applications require space efficient cultivation methods. Development and operation of a multi-tiered duckweed bioreactor is detailed. Flow dynamics and automatic harvesting in the bioreactor are optimized. It is concluded that a multi-tiered bioreactor can be used in industry.


Assuntos
Araceae , Águas Residuárias , Humanos , Tempo (Meteorologia) , Fósforo
2.
Opt Express ; 21(14): 17309-14, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938577

RESUMO

We report on the photoresponse of an asymmetrically doped p(-)-Ge/n(+)-Si heterojunction photodiode fabricated by wafer bonding. Responsivities in excess of 1 A/W at 1.55 µm are measured with a 5.4 µm thick Ge layer under surface-normal illumination. Capacitance-voltage measurements show that the interfacial band structure is dependent on both temperature and light level, moving from depletion of holes at -50 °C to accumulation at 20 °C. Interface traps filled by photo-generated and thermally-generated carriers are shown to play a crucial role. Their filling alters the potential barrier height at the interface leading to increased flow of dark current and the above unity responsivity.


Assuntos
Cristalização/métodos , Germânio/química , Fotometria/instrumentação , Semicondutores , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento , Germânio/efeitos da radiação , Teste de Materiais , Silício/efeitos da radiação , Temperatura
3.
Opt Lett ; 37(18): 3876-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041889

RESUMO

This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 µm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.

4.
Opt Express ; 20 Suppl 5: A754-64, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037542

RESUMO

A route to improving the overall efficiency of multi-junction solar cells employing conventional III-V and Si photovoltaic junctions is presented here. A simulation model was developed to consider the performance of several multi-junction solar cell structures in various multi-terminal configurations. For series connected, 2-terminal triple-junction solar cells, incorporating an AlGaAs top junction, a GaAs middle junction and either a Si or InGaAs bottom junction, it was found that the configuration with a Si bottom junction yielded a marginally higher one sun efficiency of 41.5% versus 41.3% for an InGaAs bottom junction. A significant efficiency gain of 1.8% over the two-terminal device can be achieved by providing an additional terminal to the Si bottom junction in a 3-junction mechanically stacked configuration. It is shown that the optimum performance can be achieved by employing a four-junction series-connected mechanically stacked device incorporating a Si subcell between top AlGaAs/GaAs and bottom In0.53Ga0.47As cells.

5.
ACS Nano ; 6(9): 8366-80, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22913710

RESUMO

We observe single nanoparticle translocation events via resistive pulse sensing using silicon nitride pores described by a range of lengths and diameters. Pores are prepared by focused ion beam milling in 50 nm-, 100 nm-, and 500 nm-thick silicon nitride membranes with diameters fabricated to accommodate spherical silica nanoparticles with sizes chosen to mimic that of virus particles. In this manner, we are able to characterize the role of pore geometry in three key components of the detection scheme, namely, event magnitude, event duration, and event frequency. We find that the electric field created by the applied voltage and the pore's geometry is a critical factor. We develop approximations to describe this field, which are verified with computer simulations, and interactions between particles and this field. In so doing, we formulate what we believe to be the first approximation for the magnitude of ionic current blockage that explicitly addresses the invariance of access resistance of solid-state pores during particle translocation. These approximations also provide a suitable foundation for estimating the zeta potential of the particles and/or pore surface when studied in conjunction with event durations. We also verify that translocation achieved by electro-osmostic transport is an effective means of slowing translocation velocities of highly charged particles without compromising particle capture rate as compared to more traditional approaches based on electrophoretic transport.


Assuntos
Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Teste de Materiais , Tamanho da Partícula , Porosidade
6.
Nanomedicine (Lond) ; 2(6): 875-97, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18095852

RESUMO

Nanopore-based DNA analysis is a new single-molecule technique that involves monitoring the flow of ions through a narrow pore, and detecting changes in this flow as DNA molecules also pass through the pore. It has the potential to carry out a range of laboratory and medical DNA analyses, orders of magnitude faster than current methods. Initial experiments used a protein channel for its pre-defined, precise structure, but since then several approaches for the fabrication of solid-state pores have been developed. These aim to match the capabilities of biochannels, while also providing increased durability, control over pore geometry and compatibility with semiconductor and microfluidics fabrication techniques. This review summarizes each solid-state nanopore fabrication technique reported to date, and compares their advantages and disadvantages. Methods and applications for nanopore surface modification are also presented, followed by a discussion of approaches used to measure pore size, geometry and surface properties. The review concludes with an outlook on the future of solid-state nanopores.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/química , Eletroquímica/instrumentação , Nanoestruturas/química , Análise de Sequência de DNA/instrumentação , Técnicas Biossensoriais/métodos , DNA/análise , Eletroquímica/métodos , Desenho de Equipamento , Nanoestruturas/ultraestrutura , Porosidade , Semicondutores , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...