Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 148: 272-280, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390508

RESUMO

The emergence of resistance to antibacterial drugs and pesticides in water is unprecedented. This may have adverse consequences to human health and ecological systems. This paper first sought the identification of a wide range of pharmaceuticals and pesticides in two secondary effluent wastewaters (SEW) of different quality characteristics, followed by their removal by ferrate(VI) (Fe(VI), FeO42-). Screening for 22 pharmaceuticals and 32 pesticides, revealed that 11 pharmaceuticals and 3 pesticides in SEW of plant A, and 14 pharmaceuticals and 5 pesticides in SEW of plant B were present at concentrations higher than the liquid chromatography mass spectrometry method quantitation limit. The concentrations of pharmaceuticals and pesticides ranged from 0.15 ng/L-413.03 ng/L. Investigation of the removal of these pharmaceuticals and pesticides by Fe(VI) showed that some had recalcitrant activity towards their oxidation. Acid-activated Fe(VI) resulted in enhanced oxidation (12.6%-56.2% degradation efficiency) of 6 and 7 pharmaceuticals in SEW of plant A and plant B, respectively, at a shorter time than Fe(VI) without activation (i.e. 3-5 min versus 15-30 min). The degradation of 1 and 3 pesticides in SEW of plant A and plant B respectively, has also been enhanced by activating Fe(VI) (13.8%-86.2% degradation efficiency). Results on testing of organic matter characterization of treated SEW with and without acid-activated Fe(VI) treatment are also presented. Acid-activated Fe(VI) treatment has potential in enhancing the removal of micropollutants in real wastewater.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Humanos , Ferro , Oxirredução , Águas Residuárias
2.
J AOAC Int ; 101(6): 1940-1947, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29784072

RESUMO

Background: Neonicotinoids are among the most widely used insecticides. Recently, there has been concern associated with unintended adverse effects on honeybees and aquatic invertebrates at low parts-per-trillion levels. Objective: There is a need for LC-MS/MS methods that are capable of high-throughput measurements of the most widely used neonicotinoids at environmentally relevant concentrations in surface water. Methods: This method allows for quantitation of acetamiprid, clothianidin, imidacloprid, dinotefuran, nitenpyram, thiacloprid, and thiamethoxam in surface water. Deuterated internal standards are added to 20 mL environmental samples, which are concentrated by lyophilisation and reconstituted with methanol followed by acetonitrile. Results: A large variation of mean recovery efficiencies across five different surface water sampling sites within this study was observed, ranging from 45 to 74%. This demonstrated the need for labelled internal standards to compensate for these differences. Atmospheric pressure chemical ionization (APCI) performed better than electrospray ionization (ESI) with limited matrix suppression, achieving 71-110% of the laboratory fortified blank signal. Neonicotinoids were resolved on a C18 column using a 5 min LC method, in which MQL ranged between 0.93 and 4.88 ng/L. Conclusions: This method enables cost effective, accurate, and reproducible monitoring of these pesticides in the aquatic environment. Highlights: Lyophilization is used for high throughput concentration of neonicotinoids in surface water. Variations in matrix effects between samples was greatly reduced by using APCI compared with ESI. Clothianidin and thiamethoxam were detected in all samples with levels ranging from below method quantitation limit to 65 ng/L.


Assuntos
Cromatografia Líquida/métodos , Poluição Ambiental/análise , Inseticidas/análise , Neonicotinoides/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Água/química , Liofilização
3.
J Anal Toxicol ; 41(6): 566-572, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830117

RESUMO

Analysis of dextromethorphan (DXM) and its metabolite dextrorphan (DXT) in skeletal remains of rats following acute (ACU, 75 mg/kg, IP, n = 10) or three repeated (REP, 25 mg/kg, IP, n = 10, 40-min interval) doses of DXM is described. Following dosing and euthanasia, rats decomposed outdoors to skeleton in two different microclimate environments (n = 5 ACU and n = 5 REP at each site): Site A (shaded forest microenvironment) and Site B (rocky substrate exposed to direct sunlight, 600 m from Site A). Two drug-free rats at each site served as negative controls. Skeletal elements (vertebrae, ribs, pelvic girdles, femora, tibiae, skulls and scapulae) were recovered, pulverized and underwent methanolic microwave assisted extraction (MAE). Extracts were analyzed by GC-MS following clean-up by solid-phase extraction (SPE). Drug levels, expressed as mass-normalized response ratios and the ratios of DXT and DXM levels (RRDXT/RRDXM) were compared between drug exposures, microclimate sites, and across skeletal elements. DXM levels differed significantly (P < 0.05) between corresponding bone elements across exposure groups (5/7-site A; 4/7-site B), but no significant differences in DXT levels were observed between corresponding elements. RRDXT/RRDXM differed significantly (P < 0.05) between corresponding bone elements across exposure groups (6/7-site A; 5/7-site B). No significant differences were observed in levels of DXM, DXT or RRDXT/RRDXM between corresponding elements from either group between sites. When data from all bone elements was pooled, levels of DXM and RRDXT/RRDXM differed significantly between exposure groups at each site, while those of DXT did not. For both exposure groups, comparison of pooled data between sites showed no significant differences in levels of DXM, DXT or RRDXT/RRDXM. Different decomposition microclimates did not impede the discrimination of DXM exposure patterns from the analyses of DXM, DXT and RRDXT/RRDXM in bone samples.


Assuntos
Restos Mortais/química , Dextrometorfano/análise , Dextrorfano/análise , Toxicologia Forense , Detecção do Abuso de Substâncias/métodos , Animais , Microclima , Mudanças Depois da Morte , Esqueleto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...