Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011835

RESUMO

OBJECTIVE: Vocal fold paralysis impairs quality of life, and no curative injectable therapy exists. We evaluated injection of a novel in situ polymerizing (scaffold-forming) collagen in the presence and absence of muscle-derived motor-endplate expressing cells (MEEs) to promote medialization and recurrent laryngeal nerve (RLN) regeneration in a porcine model of unilateral vocal fold paralysis. METHODS: Twelve Yucatan minipigs underwent right RLN transection. Autologous muscle progenitor cells were isolated from muscle biopsies, differentiated, and induced to MEEs. Three weeks after RLN injury, animals received injections of collagen, collagen containing MEEs, or saline into the paralyzed right vocal fold. Stimulated laryngeal electromyography and acoustic vocalization were used for function assessments. Larynges were harvested and underwent histologic, gene expression, and further quantitative analyses. RESULTS: Injections were well-tolerated, with the collagen scaffold showing immunotolerance and collagen-encapsulated MEEs remaining viable. Collagen-treated paralyzed vocal folds showed increased laryngeal adductor muscle volumes relative to that of the uninjured side, with those receiving MEEs and collagen showing the highest volumes. Muscles injected with MEEs and collagen demonstrated increased expression of select neurotrophic (BDNF and NTN1), motor-endplate (DOK7, CHRNA1, and MUSK), and myogenic (MYOG and MYOD) related genes relative to saline controls. CONCLUSION: In a porcine model of unilateral vocal fold paralysis, injection of in situ polymerizing collagen in the absence and presence of MEEs enhanced laryngeal adductor muscle volume, modulated expression of neurotrophic and myogenic factors, and avoided adverse material-mediated immune responses. Further study is needed to determine long-term functional outcomes with this novel therapeutic approach. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

2.
Laryngoscope ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989732

RESUMO

OBJECTIVE: Laryngeal cancer resections often require excision of portions of the larynx along with sacrifice of the ipsilateral recurrent laryngeal nerve (RLN). In such cases, there are no reconstructive options that reliably restore laryngeal function, rendering patients with severe functional impairment. To address this unmet clinical need, we extend our evaluation of a 3-implant mucosal, muscle, cartilage reconstruction approach aimed at promoting functional laryngeal restoration in a porcine hemilaryngectomy model with ipsilateral RLN transection. METHODS: Six Yucatan mini-pigs underwent full-thickness hemilaryngectomies with RLN transection followed by transmural reconstruction using fabricated collagen polymeric mucosal, muscle, and cartilage replacements. To determine the effect of adding therapeutic cell populations, subsets of animals received collagen muscle implants containing motor-endplate-expressing muscle progenitor cells (MEEs) and/or collagen cartilage implants containing adipose stem cell (ASC)-derived chondrocyte-like cells. Acoustic vocalization and laryngeal electromyography (L-EMG) provided functional assessments and histopathological analysis with immunostaining was used to characterize the tissue response. RESULTS: Five of six animals survived the 4-week postoperative period with weight gain, airway maintenance, and audible phonation. No tracheostomy or feeding tube was required. Gross and histological assessments of all animals revealed implant integration and regenerative remodeling of airway mucosa epithelium, muscle, and cartilage in the absence of a material-mediated foreign body reaction or biodegradation. Early voice and L-EMG data were suggestive of positive functional outcomes. CONCLUSION: Laryngeal reconstruction with collagen polymeric mucosa, muscle, and cartilage replacements may provide effective restoration of function after hemilaryngectomy with RLN transection. Future preclinical studies should focus on long-term functional outcomes. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

3.
Laryngoscope ; 134(1): 272-282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37436167

RESUMO

OBJECTIVES: No curative injectable therapy exists for unilateral vocal fold paralysis. Herein, we explore the early implications of muscle-derived motor-endplate expressing cells (MEEs) for injectable vocal fold medialization after recurrent laryngeal nerve (RLN) injury. METHODS: Yucatan minipigs underwent right RLN transection (without repair) and muscle biopsies. Autologous muscle progenitor cells were isolated, cultured, differentiated, and induced to form MEEs. Three weeks after the injury, MEEs or saline were injected into the paralyzed right vocal fold. Outcomes including evoked laryngeal electromyography (LEMG), laryngeal adductor pressure, and acoustic vocalization data were analyzed up to 7 weeks post-injury. Harvested porcine larynges were examined for volume, gene expression, and histology. RESULTS: MEE injections were tolerated well, with all pigs demonstrating continued weight gain. Blinded analysis of videolaryngoscopy post-injection revealed infraglottic fullness, and no inflammatory changes. Four weeks after injection, LEMG revealed on average higher right distal RLN activity retention in MEE pigs. MEE-injected pigs on average had vocalization durations, frequencies, and intensities higher than saline pigs. Post-mortem, the MEE-injected larynges revealed statistically greater volume on quantitative 3D ultrasound, and statistically increased expression of neurotrophic factors (BDNF, NGF, NTF3, NTF4, NTN1) on quantitative PCR. CONCLUSIONS: Minimally invasive MEE injection appears to establish an early molecular and microenvironmental framework to encourage innate RLN regeneration. Longer follow-up is needed to determine if early findings will translate into functional contraction. LEVEL OF EVIDENCE: NA Laryngoscope, 134:272-282, 2024.


Assuntos
Laringe , Traumatismos do Nervo Laríngeo Recorrente , Paralisia das Pregas Vocais , Animais , Suínos , Prega Vocal , Porco Miniatura , Paralisia das Pregas Vocais/terapia , Eletromiografia , Nervo Laríngeo Recorrente/cirurgia , Células Musculares , Músculos Laríngeos/inervação
4.
J Cell Sci Ther ; 14(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250272

RESUMO

Objective: To describe how differing injector needles and delivery vehicles impact Autologous Muscle-Derived Cell (AMDC) viability when used for laryngeal injection. Methods: In this study, adult porcine muscle tissue was harvested and used to create AMDC populations. While controlling cell concentration (1 × 107 cells/ml), AMDCs including Muscle Progenitor Cells (MPCs) or Motor Endplate Expressing Cells (MEEs) were suspended in either phosphate-buffered saline or polymerizable (in-situ scaffold forming) type I oligomeric collagen solution. Cell suspensions were then injected through 23- and 27-gauge needles of different lengths at the same rate (2 ml/min) using a syringe pump. Cell viability was measured immediately after injection and 24- and 48-hours post-injection, and then compared to baseline cell viability prior to injection. Results: The viability of cells post-injection was not impacted by needle length or needle gauge but was significantly impacted by the delivery vehicle. Overall, injection of cells using collagen as a delivery vehicle maintained the highest cell viability. Conclusion: Needle gauge, needle length, and delivery vehicle are important factors that can affect the viability of injected cell populations. These factors should be considered and adapted to improve injectable MDC therapy outcomes when used for laryngeal applications.

5.
Biomater Sci ; 11(9): 3278-3296, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36942875

RESUMO

The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Ratos , Animais , Materiais Biocompatíveis/farmacologia , Colágeno/metabolismo , Reação a Corpo Estranho , Colágeno Tipo I
6.
Am J Physiol Endocrinol Metab ; 319(2): E388-E400, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543944

RESUMO

Replacement of islets/ß-cells that provide long-lasting glucose-sensing and insulin-releasing functions has the potential to restore extended glycemic control in individuals with type 1 diabetes. Unfortunately, persistent challenges preclude such therapies from widespread clinical use, including cumbersome administration via portal vein infusion, significant loss of functional islet mass upon administration, limited functional longevity, and requirement for systemic immunosuppression. Previously, fibril-forming type I collagen (oligomer) was shown to support subcutaneous injection and in situ encapsulation of syngeneic islets within diabetic mice, with rapid (<24 h) reversal of hyperglycemia and maintenance of euglycemia for beyond 90 days. Here, we further evaluated this macroencapsulation strategy, defining effects of islet source (allogeneic and xenogeneic) and dose (500 and 800 islets), injection microenvironment (subcutaneous and intraperitoneal), and macrocapsule format (injectable and preformed implantable) on islet functional longevity and recipient immune response. We found that xenogeneic rat islets functioned similarly to or better than allogeneic mouse islets, with only modest improvements in longevity noted with dosage. Additionally, subcutaneous injection led to more consistent encapsulation outcomes along with improved islet health and longevity, compared with intraperitoneal administration, whereas no significant differences were observed between subcutaneous injectable and preformed implantable formats. Collectively, these results document the benefits of incorporating natural collagen for islet/ß-cell replacement therapies.


Assuntos
Encapsulamento de Células/métodos , Colágeno , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Aloenxertos , Animais , Glicemia/análise , Sobrevivência Celular , Colágeno/química , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/sangue , Sobrevivência de Enxerto , Xenoenxertos , Injeções Intraperitoneais , Injeções Subcutâneas , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
7.
J Biomech Eng ; 140(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570754

RESUMO

Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.


Assuntos
Simulação por Computador , Hidrodinâmica , Doenças Vasculares/fisiopatologia , Animais , Modelos Animais de Doenças , Hemodinâmica
8.
Int J Nanomedicine ; 12: 3851-3863, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572729

RESUMO

The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors.


Assuntos
Embolização Terapêutica/instrumentação , Nanopartículas/química , Neoplasias/terapia , Radiossensibilizantes/farmacologia , Titânio/química , Linhagem Celular Tumoral , Cobalto/química , Cobalto/farmacologia , Desferroxamina/farmacologia , Embolização Terapêutica/métodos , Gadolínio/química , Humanos , Nanopartículas/uso terapêutico , Neoplasias/radioterapia , Radiossensibilizantes/química , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...