Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(3): 1379-87, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22225529

RESUMO

Some uranium mill tailings disposal cells were constructed on dark-gray shale of the Upper Cretaceous Mancos Shale. Shale of this formation contains contaminants similar to those in mill tailings. To establish the contributions derived from the Mancos, we sampled 51 locations in Colorado, New Mexico, and Utah. Many of the groundwater samples were saline with nitrate, selenium, and uranium concentrations commonly exceeding 250, 000, 1000, and 200 µg/L, respectively. Higher concentrations were limited to groundwater associated with shale beds, but were not correlated with geographic area, stratigraphic position, or source of water. The elevated concentrations suggest that naturally occurring contamination should be considered when evaluating groundwater cleanup levels. At several locations, seep water was yellow or red, caused in part by dissolved organic carbon concentrations up to 280 mg/L. Most seeps had (234)U to (238)U activity ratios greater than 2, indicating preferential leaching of (234)U. Seeps were slightly enriched in (18)O relative to the meteoric water line, indicating limited evaporation. Conceptually, major ion chemical reactions are dominated by calcite dissolution following proton release from pyrite oxidation and subsequent exchange by calcium for sodium residing on clay mineral exchange sites. Contaminants are likely released from organic matter and mineral surfaces during weathering.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Água Subterrânea/química , Urânio/análise , Poluentes Químicos da Água/análise , Carbono/análise , Cromatografia por Troca Iônica , Colorimetria , Isótopos de Oxigênio/análise , Sudoeste dos Estados Unidos , Espectrofotometria Atômica
2.
J Contam Hydrol ; 93(1-4): 216-35, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17442451

RESUMO

During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.


Assuntos
Urânio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Acetatos/química , Biodegradação Ambiental , Brometos/química , Calibragem , Elétrons , Geologia/métodos , Ferro/química , Modelos Químicos , Modelos Estatísticos , Sulfatos/química , Fatores de Tempo , Água/química
3.
Environ Sci Technol ; 40(6): 2018-24, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16570630

RESUMO

A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Cañon City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. The PRB initially decreased Mo concentrations from about 4.8 to less than 0.1 mg/L; however, Mo concentrations in the ZVI increased to 2.0 mg/L after about 250 days and continued to increase until concentrations in the ZVI were about 4 times higherthan in the influent groundwater. Concentrations of U were reduced from 1.0 to less than 0.02 mg/L during the same period. Investigations of solid-phase samples indicate that (1) calcium carbonate, iron oxide, and sulfide minerals had precipitated in pores of the ZVI; (2) U and Mo were concentrated in the upgradient 5.1 cm of the ZVI; and (3) calcium was present throughout the ZVI accounting for up to 20.5% of the initial porosity. Results of a column test indicated that the ZVI from the PRB was still reactive for removing Mo and that removal rates were dependenton residence time and pH. The chemical evolution of the PRB is explained in four stages that present a progression from porous media flow through preferential flow and, finally, complete bypass of the ZVI.


Assuntos
Molibdênio/química , Molibdênio/isolamento & purificação , Urânio/química , Urânio/isolamento & purificação , Abastecimento de Água , Absorção , Carbonato de Cálcio/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Cinética , Minerais/química , Permeabilidade , Porosidade , Sulfetos/química , Poluição Química da Água/prevenção & controle
4.
J Contam Hydrol ; 56(1-2): 99-116, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12076025

RESUMO

Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.


Assuntos
Arsênio/química , Água Doce/química , Metais Pesados/química , Modelos Teóricos , Selênio/química , Urânio/química , Poluentes Químicos da Água , Purificação da Água/métodos , Colorado , Ferro/química , Manganês/química , Mineração , Molibdênio/química , Resíduos Radioativos , Vanádio/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...