Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37565490

RESUMO

Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Artificial , Animais , Genótipo , Genômica/métodos , Fenótipo
2.
Evol Appl ; 15(4): 591-602, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505891

RESUMO

Aquaculture is the fastest-growing food production sector worldwide, yet industry has been slow to implement genomic techniques as routine tools. Applying genomics to new breeding programmes can provide important information about pedigree structure and genetic diversity; key parameters for a successful long-term breeding programme. It can also provide insights on potential gains for commercially important, yet complex, quantitative traits such as growth rate. Here we investigated a population of 1100 captive-bred F1 silver trevally (Pseudocaranx georgianus), a promising new species for New Zealand aquaculture. We used whole-genome information, coupled with image-based phenotypic data collected over two years, to build the pedigree of the population, assess its genetic diversity, describe growth patterns of ten growth traits and estimate their genetic parameters. Successful parentage assignment of 664 F1 individuals showed that the pedigree consisted of a complex mixture of full- and half-sib individuals, with skewed reproductive success among parents, especially in females. Growth patterns showed seasonal fluctuations (average increase across all traits of 27.3% in summer and only 7% in winter) and strong inter-family differences. Heritability values for growth traits ranged from 0.27 to 0.76. Genetic and phenotypic correlations between traits were high and positive, ranging from 0.57 to 0.94 and 0.50 to 1.00 respectively. The implications of these findings are threefold: first, the best on-growing conditions are in warmer months, where highest growth peaks can be achieved; second, size- and family-based selection can be used as early selection criterion if pedigree structure and inbreeding risks are closely monitored; third, selection for body length results in concomitant increases in height and weight, traits of paramount importance for aquaculture. It is concluded that there is substantial potential for genetic improvement of economically important traits, suggesting that silver trevally is a promising species for selective breeding for enhanced growth.

3.
Front Microbiol ; 9: 910, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867821

RESUMO

The products of microbial metabolism form an integral part of human industry and have been shaped by evolutionary processes, accidentally and deliberately, for thousands of years. In the production of wine, a great many flavor and aroma compounds are produced by yeast species and are the targets of research for commercial breeding programs. Here we demonstrate how co-evolution with multiple species can generate novel interactions through serial co-culture in grape juice. We find that after ~65 generations, co-evolved strains and strains evolved independently show significantly different growth aspects and exhibit significantly different metabolite profiles. We show significant impact of co-evolution of Candida glabrata and Pichia kudriavzevii on the production of metabolites that affect the flavor and aroma of experimental wines. While co-evolved strains do exhibit novel interactions that affect the reproductive success of interacting species, we found no evidence of cross-feeding behavior. Our findings yield promising avenues for developing commercial yeast strains by using co-evolution to diversify the metabolic output of target species without relying on genetic modification or breeding technologies. Such approaches open up exciting new possibilities for harnessing microbial co-evolution in areas of agriculture and food related research generally.

4.
Environ Microbiol ; 20(1): 75-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29052965

RESUMO

Humans have been making wine for thousands of years and microorganisms play an integral part in this process as they not only drive fermentation, but also significantly influence the flavour, aroma and quality of finished wines. Since fruits are ephemeral, they cannot comprise a permanent microbial habitat; thus, an age-old unanswered question concerns the origin of fruit and ferment associated microbes. Here we use next-generation sequencing approaches to examine and quantify the roles of native forest, vineyard soil, bark and fruit habitats as sources of fungal diversity in ferments. We show that microbial communities in harvested juice and ferments vary significantly across regions, and that while vineyard fungi account for ∼40% of the source of this diversity, uncultivated ecosystems outside of vineyards also prove a significant source. We also show that while communities in harvested juice resemble those found on grapes, these increasingly resemble fungi present on vine bark as the ferment proceeds.


Assuntos
Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Vitis/microbiologia , Vinho/microbiologia , Fazendas , Fermentação/fisiologia , Fungos/genética , Humanos , Microbiota/genética , Nova Zelândia , Solo , Microbiologia do Solo
5.
ISME J ; 9(9): 2003-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25756681

RESUMO

We have a limited understanding of the relative contributions of different processes that regulate microbial communities, which are crucial components of both natural and agricultural ecosystems. The contributions of selective and neutral processes in defining community composition are often confounded in field studies because as one moves through space, environments also change. Managed ecosystems provide an excellent opportunity to control for this and evaluate the relative strength of these processes by minimising differences between comparable niches separated at different geographic scales. We use next-generation sequencing to characterize the variance in fungal communities inhabiting adjacent fruit, soil and bark in comparable vineyards across 1000 kms in New Zealand. By compartmentalizing community variation, we reveal that niche explains at least four times more community variance than geographic location. We go beyond merely demonstrating that different communities are found in both different niches and locations by quantifying the forces that define these patterns. Overall, selection unsurprisingly predominantly shapes these microbial communities, but we show the balance of neutral processes also have a significant role in defining community assemblage in eukaryotic microbes.


Assuntos
Ecossistema , Fungos/fisiologia , Microbiologia do Solo , Agricultura , Biodiversidade , Fungos/classificação , Variação Genética , Geografia , Concentração de Íons de Hidrogênio , Microbiota , Nova Zelândia , Seleção Genética , Solo , Vitis/microbiologia , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...