Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 35(8): 656-667, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32423635

RESUMO

3D-imaging technologies provide measurements of terrestrial and aquatic ecosystems' structure, key for biodiversity studies. However, the practical use of these observations globally faces practical challenges. First, available 3D data are geographically biased, with significant gaps in the tropics. Second, no data source provides, by itself, global coverage at a suitable temporal recurrence. Thus, global monitoring initiatives, such as assessment of essential biodiversity variables (EBVs), will necessarily have to involve the combination of disparate data sets. We propose a standardized framework of ecosystem morphological traits - height, cover, and structural complexity - that could enable monitoring of globally consistent EBVs at regional scales, by flexibly integrating different information sources - satellites, aircrafts, drones, or ground data - allowing global biodiversity targets relating to ecosystem structure to be monitored and regularly reported.


Assuntos
Biodiversidade , Ecossistema , Imageamento Tridimensional , Fenótipo
2.
J Plant Physiol ; 227: 3-19, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29735177

RESUMO

Vegetation is a highly dynamic component of the Earth surface and substantially alters the water cycle. Particularly the process of oxygenic plant photosynthesis determines vegetation connecting the water and carbon cycle and causing various interactions and feedbacks across Earth spheres. While vegetation impacts the water cycle, it reacts to changing water availability via functional, biochemical and structural responses. Unravelling the resulting complex feedbacks and interactions between the plant-water system and environmental change is essential for any modelling approaches and predictions, but still insufficiently understood due to currently missing observations. We hypothesize that an appropriate cross-scale monitoring of plant-water relations can be achieved by combined observational and modelling approaches. This paper reviews suitable remote sensing approaches to assess plant-water relations ranging from pure observational to combined observational-modelling approaches. We use a combined energy balance and radiative transfer model to assess the explanatory power of pure observational approaches focussing on plant parameters to estimate plant-water relations, followed by an outline for a more effective use of remote sensing by their integration into soil-plant-atmosphere continuum (SPAC) models. We apply a mechanistic model simulating water movement in the SPAC to reveal insight into the complexity of relations between soil, plant and atmospheric parameters, and thus plant-water relations. We conclude that future research should focus on strategies combining observations and mechanistic modelling to advance our knowledge on the interplay between the plant-water system and environmental change, e.g. through plant transpiration.


Assuntos
Plantas/metabolismo , Tecnologia de Sensoriamento Remoto , Ciclo Hidrológico , Atmosfera , Meio Ambiente , Previsões , Modelos Teóricos , Fenômenos Fisiológicos Vegetais , Tecnologia de Sensoriamento Remoto/tendências , Solo , Água/metabolismo
3.
Interface Focus ; 8(2): 20170046, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29503725

RESUMO

Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...