Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Ther ; 32(7): 2223-2231, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796702

RESUMO

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [18F]fluoroestradiol ([18F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain. The ChRERα gene and shRNA were expressed from the same transcript via lentivirus injected into monkey striatum. In two monkeys that received injections of viral vector, [18F]FES binding increased by 70% and 86% at the target sites compared with pre-injection, demonstrating that ChRERα expression could be visualized in vivo with PET imaging. Post-mortem immunohistochemistry confirmed that ChAT expression was significantly suppressed in regions in which [18F]FES uptake was increased. The consistency between PET imaging and immunohistochemical results suggests that [18F]FES and ChRERα can serve as a PET reporter system in rhesus monkey brain for in vivo evaluation of the expression of potential therapeutic agents, such as shRNAs.


Assuntos
Encéfalo , Estradiol , Genes Reporter , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Estradiol/análogos & derivados , Estradiol/farmacologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Expressão Gênica , RNA Interferente Pequeno/genética , Lentivirus/genética , Humanos
2.
Eur J Nucl Med Mol Imaging ; 50(10): 2962-2970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249618

RESUMO

PURPOSE: [18F]SF51 was previously found to have high binding affinity and selectivity for 18 kDa translocator protein (TSPO) in mouse brain. This study sought to assess the ability of [18F]SF51 to quantify TSPO in rhesus monkey brain. METHODS: Positron emission tomography (PET) imaging was performed in monkey brain (n = 3) at baseline and after pre-blockade with the TSPO ligands PK11195 and PBR28. TSPO binding was calculated as total distribution volume corrected for free parent fraction in plasma (VT/fP) using a two-tissue compartment model. Receptor occupancy and nondisplaceable uptake were determined via Lassen plot. Binding potential (BPND) was calculated as the ratio of specific binding to nondisplaceable uptake. Time stability of VT was used as an indirect probe to detect radiometabolite accumulation in the brain. In vivo and ex vivo experiments were performed in mice to determine the distribution of the radioligand. RESULTS: After [18F]SF51 injection, the concentration of brain radioactivity peaked at 2.0 standardized uptake value (SUV) at ~ 10 min and declined to 30% of the peak at 180 min. VT/fP at baseline was generally high (203 ± 15 mL· cm-3) and decreased by ~ 90% after blockade with PK11195. BPND of the whole brain was 7.6 ± 4.3. VT values reached levels similar to terminal 180-min values by 100 min and remained relatively stable thereafter with excellent identifiability (standard errors < 5%), suggesting that no significant radiometabolites accumulated in the brain. Ex vivo experiments in mouse brain showed that 96% of radioactivity was parent. No significant uptake was observed in the skull, suggesting a lack of defluorination in vivo. CONCLUSION: The results demonstrate that [18F]SF51 is an excellent radioligand that can quantify TSPO with a good ratio of specific to nondisplaceable uptake and has minimal radiometabolite accumulation in brain. Collectively, the results suggest that [18F]SF51 warrants further evaluation in humans.


Assuntos
Encéfalo , Receptores de GABA , Humanos , Camundongos , Animais , Receptores de GABA/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte/metabolismo , Ligação Proteica , Compostos Radiofarmacêuticos/metabolismo
3.
EJNMMI Res ; 13(1): 28, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017827

RESUMO

INTRODUCTION: We recently reported 11C-NR2B-SMe ([S-methyl-11C](R,S)-7-thiomethoxy-3-(4-(4-methyl-phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol) and its enantiomers as candidate radioligands for imaging the GluN2B subunit within rat N-methyl-D-aspartate receptors. However, these radioligands gave unexpectedly high and displaceable binding in rat cerebellum, possibly due to cross-reactivity with sigma-1 (σ1) receptors. This study investigated 11C-labeled enantiomers of a close analogue (7-methoxy-3-(4-(p-tolyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol; NR2B-Me) of 11C-NR2B-SMe as new candidate GluN2B radioligands. PET was used to evaluate these radioligands in rats and to assess potential cross-reactivity to σ1 receptors. METHODS: NR2B-Me was assayed for binding affinity and selectivity to GluN2B in vitro. 11C-NR2B-Me and its enantiomers were prepared by Pd-mediated treatment of boronic ester precursors with 11C-iodomethane. Brain PET scans were conducted after radioligand intravenous injection into rats. Various ligands for GluN2B receptors or σ1 receptors were administered at set doses in pre-blocking or displacement experiments to assess their impact on imaging data. 18F-FTC146 and enantiomers of 11C-NR2B-SMe were used for comparison. Radiometabolites from brain and plasma were measured ex vivo and in vitro. RESULTS: NR2B-Me enantiomers showed high GluN2B affinity and selectivity in vitro. 11C-NR2B-Me enantiomers gave high early whole rat brain uptake of radioactivity, including high uptake in cerebellum, followed by slower decline. Radioactivity in brain at 30 min ex vivo was virtually all unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. When 11C-(R)-NR2B-Me was used, three high-affinity GluN2B ligands-NR2B-SMe, Ro25-6981, and CO101,244-showed increasing pre-block of whole brain radioactivity retention with increasing dose. Two σ1 receptor antagonists, FTC146 and BD1407, were ineffective pre-blocking agents. Together, these results strongly resemble those obtained with 11C-NR2B-SMe enantiomers, except that 11C-NR2B-Me enantiomers showed faster reversibility of binding. When 18F-FTC146 was used as a radioligand, FTC146 and BD1407 showed strong pre-blocking effects whereas GluN2B ligands showed only weak blocking effects. CONCLUSION: 11C-NR2B-Me enantiomers showed specific binding to GluN2B receptors in rat brain in vivo. High unexpected specific binding in cerebellum was not due to σ1 receptors. Additional investigation is needed to identify the source of the high specific binding.

4.
ACS Pharmacol Transl Sci ; 6(4): 614-632, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37082755

RESUMO

[11C]CPPC has been advocated as a radioligand for colony-stimulating factor 1 receptor (CSF1R) with the potential for imaging neuroinflammation in human subjects with positron emission tomography (PET). This study sought to prepare fluoro analogs of CPPC with higher affinity to provide the potential for labeling with longer-lived fluorine-18 (t 1/2 = 109.8 min) and for delivery of higher CSF1R-specific PET signal in vivo. Seven fluorine-containing analogs of CPPC were prepared and four were found to have high inhibitory potency (IC50 in low to sub-nM range) and selectivity at CSF1R comparable with CPPC itself. One of these, a 4-fluoromethyl analog (Psa374), was investigated more deeply by labeling with carbon-11 (t 1/2 = 20.4 min) for PET studies in mouse and monkey. [11C]Psa374 showed high peak uptake in monkey brain but not in mouse brain. Pharmacological challenges revealed no CSF1R-specific binding in either species at baseline. [11C]CPPC also failed to show specific binding at baseline. Moreover, both [11C]Psa374 and [11C]CPPC showed brain efflux transporter substrate behavior in both species in vivo, although Psa374 did not show liability toward human efflux transporters in vitro. Further development of [11C]Psa374 in non-human primate models of neuroinflammation with demonstration of CSF1R-specific binding would be required to warrant the fluorine-18 labeling of Psa374 with a view to possible application in human subjects.

5.
ACS Meas Sci Au ; 2(4): 370-376, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996540

RESUMO

Positron emission tomography (PET) uses many tracers labeled with fluorine-18 (t 1/2 = 109.8 min; ß+ 97%) for quantitative imaging of biochemical and physiological processes in animal and human subjects. In PET methodology, the radioactivity in a dose of an 18F-labeled tracer to be administered to a living subject is measured with a calibrated ionization chamber. This type of detector measures the radioactivity of a sample relative to those of certified amounts of longer-lived surrogate isotopes that are recommended for detector calibration. No alternative means for corroborating widely varying fluorine-18 radioactivity measurements from calibrated ionization chambers has been available. Here, we describe an independent nonradiometric method for this purpose. In this method, highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to quantify the relative masses of the radioactive isotopologue ([18F]1) and the accompanying nonradioactive counterpart (carrier 1) in an 18F-labeled tracer preparation to give the mole ratio of [18F]1. High-performance liquid chromatography (HPLC) with a mass-calibrated absorbance detection is used alongside to provide a separate measurement of the aggregate mass of all isotopologues. The radioactivity of the radiotracer is then derived in becquerels (Bq) from these two measurements, plus Avogadro's number and the decay constant of fluorine-18. For the chosen example [18F]LSN3316612, the radioactivity values determined nonradiometrically and with a selected ionization chamber were in fair agreement. In addition, LC-MS/MS alone was found to provide an accurate measure of the half-life of fluorine-18.

6.
J Nucl Med ; 63(12): 1919-1924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772961

RESUMO

Phosphodiesterase-4 (PDE4), which metabolizes the second messenger cyclic adenosine monophosphate (cAMP), has 4 isozymes: PDE4A, PDE4B, PDE4C, and PDE4D. PDE4B and PDE4D have the highest expression in the brain and may play a role in the pathophysiology and treatment of depression and dementia. This study evaluated the properties of the newly developed PDE4B-selective radioligand 18F-PF-06445974 in the brains of rodents, monkeys, and humans. Methods: Three monkeys and 5 healthy human volunteers underwent PET scans after intravenous injection of 18F-PF-06445974. Brain uptake was quantified as total distribution volume (V T) using the standard 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. Results: 18F-PF-06445974 readily distributed throughout monkey and human brain and had the highest binding in the thalamus. The value of V T was well identified by a 2-tissue-compartment model but increased by 10% during the terminal portions (40 and 60 min) of the monkey and human scans, respectively, consistent with radiometabolite accumulation in the brain. The average human V T values for the whole brain were 9.5 ± 2.4 mL ⋅ cm-3 Radiochromatographic analyses in knockout mice showed that 2 efflux transporters-permeability glycoprotein (P-gp) and breast cancer resistance protein (BCRP)-completely cleared the problematic radiometabolite but also partially cleared the parent radioligand from the brain. In vitro studies with the human transporters suggest that the parent radioligand was a partial substrate for BCRP and, to a lesser extent, for P-gp. Conclusion: 18F-PF-06445974 quantified PDE4B in the human brain with reasonable, but not complete, success. The gold standard compartmental method of analyzing brain and plasma data successfully identified the regional densities of PDE4B, which were widespread and highest in the thalamus, as expected. Because the radiometabolite-induced error was only about 10%, the radioligand is, in the opinion of the authors, suitable to extend to clinical studies.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Proteínas de Neoplasias , Animais , Camundongos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Proteínas de Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Haplorrinos/metabolismo , Compostos Radiofarmacêuticos/metabolismo
7.
J Nucl Med ; 63(8): 1252-1258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35027372

RESUMO

Because of its excellent ratio of specific to nondisplaceable uptake, the radioligand 11C-ER176 can successfully image 18-kDa translocator protein (TSPO), a biomarker of inflammation, in the human brain and accurately quantify target density in homozygous low-affinity binders. Our laboratory sought to develop an 18F-labeled TSPO PET radioligand based on ER176 with the potential for broader distribution. This study used generic 11C labeling and in vivo performance in the monkey brain to select the most promising among 6 fluorine-containing analogs of ER176 for subsequent labeling with longer-lived 18F. Methods: Six fluorine-containing analogs of ER176-3 fluoro and 3 trifluoromethyl isomers-were synthesized and labeled by 11C methylation at the secondary amide group of the respective N-desmethyl precursor. PET imaging of the monkey brain was performed at baseline and after blockade by N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide (PK11195). Uptake was quantified using radiometabolite-corrected arterial input function. The 6 candidate radioligands were ranked for performance on the basis of 2 in vivo criteria: the ratio of specific to nondisplaceable uptake (i.e., nondisplaceable binding potential [BPND]) and the time stability of total distribution volume (VT), an indirect measure of lack of radiometabolite accumulation in the brain. Results: Total TSPO binding was quantified as VT corrected for plasma free fraction (VT/fP) using Logan graphical analysis for all 6 radioligands. VT/fP was generally high at baseline (222 ± 178 mL·cm-3) and decreased by 70%-90% after preblocking with PK11195. BPND calculated using the Lassen plot was 9.6 ± 3.8; the o-fluoro radioligand exhibited the highest BPND (12.1), followed by the m-trifluoromethyl (11.7) and m-fluoro (8.1) radioligands. For all 6 radioligands, VT reached 90% of the terminal 120-min values by 70 min and remained relatively stable thereafter, with excellent identifiability (SEs < 5%), suggesting that no significant radiometabolites accumulated in the brain. Conclusion: All 6 radioligands had good BPND and good time stability of VT Among them, the o-fluoro, m-trifluoromethyl, and m-fluoro compounds were the 3 best candidates for development as radioligands with an 18F label.


Assuntos
Flúor , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Flúor/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodos , Quinazolinas , Compostos Radiofarmacêuticos/metabolismo , Receptores de GABA/metabolismo
8.
J Med Chem ; 64(22): 16731-16745, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34756026

RESUMO

Translocator protein 18 kDa (TSPO) is a biomarker of neuroinflammation. [11C]ER176 robustly quantifies TSPO in the human brain with positron emission tomography (PET), irrespective of subject genotype. We aimed to develop an ER176 analog with potential for labeling with longer-lived fluorine-18 (t1/2 = 109.8 min). New fluoro and trifluoromethyl analogs of ER176 were prepared through a concise synthetic strategy. These ligands showed high TSPO affinity and low human genotype sensitivity. Each ligand was initially labeled by a generic 11C-methylation procedure, thereby enabling speedy screening in mice. Each radioligand was rapidly taken up and well retained in the mouse brain at baseline after intravenous injection. Preblocking of TSPO showed that high proportions of brain uptake were specifically bound to TSPO at baseline. Overall, the 3-fluoro analog of [11C]ER176 ([11C]3b) displayed the most promising imaging properties. Therefore, a method was developed to label 3b with [18F]fluoride ion. [18F]3b gave similarly promising PET imaging results and deserves evaluation in higher species.


Assuntos
Flúor/análise , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem , Receptores de GABA/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Humanos , Ligantes , Camundongos , Compostos Radiofarmacêuticos/química
9.
Nat Protoc ; 16(9): 4419-4445, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363068

RESUMO

Radiotracers labeled with carbon-11 (t1/2 = 20.4 min) are widely used with positron emission tomography for biomedical research. Radiotracers must be produced for positron emission tomography studies in humans according to prescribed time schedules while also meeting current good manufacturing practice. Translation of an experimental radiosynthesis to a current good manufacturing practice environment is challenging. Here we exemplify such translation with a protocol for the production of an emerging radiotracer for imaging brain translocator protein 18 kDa, namely [11C]ER176. This radiotracer is produced by rapid conversion of cyclotron-produced [11C]carbon dioxide into [11C]iodomethane, which is then used to treat N-desmethyl-ER176 in the presence of base (tBuOK) at room temperature for 5 min. [11C]ER176 is separated in high purity by reversed-phase HPLC and formulated for intravenous injection in sterile ethanol-saline. The radiosynthesis is reliable and takes 50 min. Quality control takes another 20 min. All aspects of the protocol, including quality control, are discussed.


Assuntos
Radioisótopos de Carbono/química , Marcação por Isótopo/métodos , Tomografia por Emissão de Pósitrons , Receptores de GABA/análise , Humanos
10.
EJNMMI Res ; 11(1): 35, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796956

RESUMO

BACKGROUND: Previous studies found that the positron emission tomography (PET) radioligand [18F]LSN3316612 accurately quantified O-GlcNAcase in human brain using a two-tissue compartment model (2TCM). This study sought to assess kinetic model(s) as an alternative to 2TCM for quantifying [18F]LSN3316612 binding, particularly in order to generate good-quality parametric images. METHODS: The current study reanalyzed data from a previous study of 10 healthy volunteers who underwent both test and retest PET scans with [18F]LSN3316612. Kinetic analysis was performed at the region level with 2TCM using 120-min PET data and arterial input function, which was considered as the gold standard. Quantification was then obtained at both the region and voxel levels using Logan plot, Ichise's multilinear analysis-1 (MA1), standard spectral analysis (SA), and impulse response function at 120 min (IRF120). To avoid arterial sampling, a noninvasive relative quantification (standardized uptake value ratio (SUVR)) was also tested using the corpus callosum as a pseudo-reference region. Venous samples were also assessed to see whether they could substitute for arterial ones. RESULTS: Logan and MA1 generated parametric images of good visual quality and their total distribution volume (VT) values at both the region and voxel levels were strongly correlated with 2TCM-derived VT (r = 0.96-0.99) and showed little bias (up to - 8%). SA was more weakly correlated to 2TCM-derived VT (r = 0.93-0.98) and was more biased (~ 16%). IRF120 showed a strong correlation with 2TCM-derived VT (r = 0.96) but generated noisier parametric images. All techniques were comparable to 2TCM in terms of test-retest variability and reliability except IRF120, which gave significantly worse results. Noninvasive SUVR values were not correlated with 2TCM-derived VT, and arteriovenous equilibrium was never reached. CONCLUSIONS: Compared to SA and IRF, Logan and MA1 are more suitable alternatives to 2TCM for quantifying [18F]LSN3316612 and generating good-quality parametric images.

11.
J Cereb Blood Flow Metab ; 41(10): 2571-2582, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853405

RESUMO

Previous work found that [11C]deschloroclozapine ([11C]DCZ) is superior to [11C]clozapine ([11C]CLZ) for imaging Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). This study used PET to quantitatively and separately measure the signal from transfected receptors, endogenous receptors/targets, and non-displaceable binding in other brain regions to better understand this superiority. A genetically-modified muscarinic type-4 human receptor (hM4Di) was injected into the right amygdala of a male rhesus macaque. [11C]DCZ and [11C]CLZ PET scans were conducted 2-24 months later. Uptake was quantified relative to the concentration of parent radioligand in arterial plasma at baseline (n = 3 scans/radioligand) and after receptor blockade (n = 3 scans/radioligand). Both radioligands had greater uptake in the transfected region and displaceable uptake in other brain regions. Displaceable uptake was not uniformly distributed, perhaps representing off-target binding to endogenous receptor(s). After correction, [11C]DCZ signal was 19% of that for [11C]CLZ, and background uptake was 10% of that for [11C]CLZ. Despite stronger [11C]CLZ binding, the signal-to-background ratio for [11C]DCZ was almost two-fold greater than for [11C]CLZ. Both radioligands had comparable DREADD selectivity. All reference tissue models underestimated signal-to-background ratio in the transfected region by 40%-50% for both radioligands. Thus, the greater signal-to-background ratio of [11C]DCZ was due to its lower background uptake.


Assuntos
Clozapina/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Ensaio Radioligante/métodos , Animais , Colinérgicos/metabolismo , Clozapina/farmacologia , Macaca mulatta , Masculino , Piperazinas/farmacologia , Transfecção
12.
ACS Chem Neurosci ; 12(3): 517-530, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33491441

RESUMO

Cyclooxygenase-1 (COX-1) and its isozyme COX-2 are key enzymes in the syntheses of prostanoids. Imaging of COX-1 and COX-2 selective radioligands with positron emission tomography (PET) may clarify how these enzymes are involved in inflammatory conditions and assist in the discovery of improved anti-inflammatory drugs. We have previously labeled the selective high-affinity COX-1 ligand, 1,5-bis(4-methoxyphenyl)-3-(2,2,2-trifluoroethoxy)-1H-1,2,4-triazole (PS13), with carbon-11 (t1/2 = 20.4 min). This radioligand ([11C]PS13) has been successful for PET imaging of COX-1 in monkey and human brain and in periphery. [11C]PS13 is being used in clinical investigations. Alternative labeling of PS13 with fluorine-18 (t1/2 = 109.8 min) is desirable to provide a longer-lived radioligand in high activity that might be readily distributed among imaging centers. However, labeling of PS13 in its 1,1,1-trifluoroethoxy group is a radiochemical challenge. Here we assess two labeling approaches based on nucleophilic addition of cyclotron-produced [18F]fluoride ion to gem-difluorovinyl precursors, either to label PS13 in one step or to produce [18F]2,2,2-trifluoroethyl p-toluenesulfonate for labeling a hydroxyl precursor. From the latter two-step approach, we obtained [18F]PS13 ready for intravenous injection in a decay-corrected radiochemical yield of 7.9% and with a molar activity of up to 7.9 GBq/µmol. PET imaging of monkey brain with [18F]PS13 shows that this radioligand can specifically image and quantify COX-1 without radiodefluorination but with some radioactivity uptake in skull, ascribed to red bone marrow. The development of a new procedure for labeling PS13 with fluorine-18 at a higher molar activity is, however, desirable to suppress occupancy of COX-1 by carrier at baseline.


Assuntos
Fluoretos , Radioisótopos de Flúor , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Ciclo-Oxigenase 1/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
13.
Sci Rep ; 10(1): 17350, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060616

RESUMO

Positron emission tomography (PET) uses radiotracers to quantify important biochemical parameters in human subjects. A radiotracer arterial input function (AIF) is often essential for converting brain PET data into robust output measures. For radiotracers labeled with carbon-11 (t1/2 = 20.4 min), AIF is routinely determined with radio-HPLC of blood sampled frequently during the PET experiment. There has been no alternative to this logistically demanding method, neither for regular use nor validation. A 11C-labeled tracer is always accompanied by a large excess of non-radioactive tracer known as carrier. In principle, AIF might be obtained by measuring the molar activity (Am; ratio of radioactivity to total mass; Bq/mol) of a radiotracer dose and the time-course of carrier concentration in plasma after radiotracer injection. Here, we implement this principle in a new method for determining AIF, as shown by using [11C]PBR28 as a representative tracer. The method uses liquid chromatography-tandem mass spectrometry for measuring radiotracer Am and then the carrier in plasma sampled regularly over the course of a PET experiment. Am and AIF were determined radiometrically for comparison. The new non-radiometric method is not constrained by the short half-life of carbon-11 and is an attractive alternative to conventional AIF measurement.


Assuntos
Artérias/diagnóstico por imagem , Radioisótopos de Carbono/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Algoritmos , Artérias/fisiologia , Radioisótopos de Carbono/sangue , Radioisótopos de Carbono/farmacocinética , Cromatografia Líquida , Meia-Vida , Humanos , Radiometria , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/farmacocinética , Espectrometria de Massas em Tandem
14.
Sci Transl Med ; 12(543)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404505

RESUMO

We aimed to develop effective radioligands for quantifying brain O-linked-ß-N-acetyl-glucosamine (O-GlcNAc) hydrolase (OGA) using positron emission tomography in living subjects as tools for evaluating drug target engagement. Posttranslational modifications of tau, a biomarker of Alzheimer's disease, by O-GlcNAc through the enzyme pair OGA and O-GlcNAc transferase (OGT) are inversely related to the amounts of its insoluble hyperphosphorylated form. Increase in tau O-GlcNAcylation by OGA inhibition is believed to reduce tau aggregation. LSN3316612, a highly selective and potent OGA ligand [half-maximal inhibitory concentration (IC50) = 1.9 nM], emerged as a lead ligand after in silico analysis and in vitro evaluations. [3H]LSN3316612 imaged and quantified OGA in postmortem brains of rat, monkey, and human. The presence of fluorine and carbonyl functionality in LSN3316612 enabled labeling with positron-emitting fluorine-18 or carbon-11. Both [18F]LSN3316612 and [11C]LSN3316612 bound reversibly to OGA in vivo, and such binding was blocked by pharmacological doses of thiamet G, an OGA inhibitor of different chemotype, in monkeys. [18F]LSN3316612 entered healthy human brain avidly (~4 SUV) without radiodefluorination or adverse effect from other radiometabolites, as evidenced by stable brain total volume of distribution (VT) values by 110 min of scanning. Overall, [18F]LSN3316612 is preferred over [11C]LSN3316612 for future human studies, whereas either may be an effective positron emission tomography radioligand for quantifying brain OGA in rodent and monkey.


Assuntos
Hidrolases , beta-N-Acetil-Hexosaminidases , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucosamina , Ligantes , Tomografia por Emissão de Pósitrons , Ratos , beta-N-Acetil-Hexosaminidases/metabolismo
15.
ACS Chem Neurosci ; 11(9): 1311-1323, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32212718

RESUMO

We aimed to develop radioligands for PET imaging of brain phosphodiesterase subtype 4D (PDE4D), a potential target for developing cognition enhancing or antidepressive drugs. Exploration of several chemical series gave four leads with high PDE4D inhibitory potency and selectivity, optimal lipophilicity, and good brain uptake. These leads featured alkoxypyridinyl cores. They were successfully labeled with carbon-11 (t1/2 = 20.4 min) for evaluation with PET in monkey. Whereas two of these radioligands did not provide PDE4D-specific signal in monkey brain, two others, [11C]T1660 and [11C]T1650, provided sizable specific signal, as judged by pharmacological challenge using rolipram or a selective PDE4D inhibitor (BPN14770) and subsequent biomathematical analysis. Specific binding was highest in prefrontal cortex, temporal cortex, and hippocampus, regions that are important for cognitive function. [11C]T1650 was progressed to evaluation in humans with PET, but the output measure of brain enzyme density (VT) increased with scan duration. This instability over time suggests that radiometabolite(s) were accumulating in the brain. BPN14770 blocked PDE4D uptake in human brain after a single dose, but the percentage occupancy was difficult to estimate because of the unreliability of measuring VT. Overall, these results show that imaging of PDE4D in primate brain is feasible but that further radioligand refinement is needed, most likely to avoid problematic radiometabolites.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Compostos Radiofarmacêuticos , Rolipram/farmacologia
16.
EJNMMI Res ; 10(1): 20, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32172476

RESUMO

BACKGROUND: Previous studies found that [18F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [18F]LSN3316612 for human clinical research. METHODS: Kinetic evaluation of [18F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs. Total distribution volume (VT) estimates were compared for the one- and two-tissue compartment models with the arterial input function. Test-retest variability and reliability were evaluated via mean difference and intraclass correlation coefficient (ICC). The time stability of VT was assessed down to a 30-min scan time. An alternative quantification method for [18F]LSN3316612 binding without blood was also investigated to assess the possibility of eliminating arterial sampling. RESULTS: Brain uptake was generally high and could be quantified as VT with excellent identifiability using the two-tissue compartment model. [18F]LSN3316612 exhibited good absolute test-retest variability (12.5%), but the arithmetic test-retest variability was far from 0 (11.3%), reflecting a near-uniform increase of VT on the retest scan in nine of 10 volunteers. VT values were stable after 110 min in all brain regions, suggesting that no radiometabolites accumulated in the brain. Measurements obtained using only brain activity (i.e., area under the curve (AUC) from 150-180 min) correlated strongly with regional VT values during test-retest conditions (R2 = 0.84), exhibiting similar reliability to VT (ICC = 0.68 vs. 0.64). Estimated radiation exposure for [18F]LSN3316612 PET was 20.5 ± 2.1 µSv/MBq, comparable to other 18F-labeled radioligands for brain imaging. CONCLUSIONS: [18F]LSN3316612 is an excellent PET radioligand for imaging O-GlcNAcase in the human brain. Alternative quantification without blood is possible, at least for within-subject repeat studies. However, the unexplained increase of VT under retest conditions requires further investigation.

17.
J Nucl Med ; 61(8): 1212-1220, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31924728

RESUMO

[S-methyl-11C](±)-7-methoxy-3-(4-(4-(methylthio)phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol (11C-NR2B-SMe) and its enantiomers were synthesized as candidates for imaging the NR2B subunit within the N-methyl-d-aspartate receptor with PET. Methods: Brains were scanned with PET for 90 min after intravenous injection of one of the candidate radioligands into rats. To detect any NR2B-specific binding of radioligand in brain, various preblocking or displacing agents were evaluated for their impact on the PET brain imaging data. Radiometabolites from brain and other tissues were measured ex vivo and in vitro. Results: Each radioligand gave high early whole-brain uptake of radioactivity, followed by a brief fast decline and then a slow final decline. 11C-(S)-NR2B-SMe was studied extensively. Ex vivo measurements showed that radioactivity in rat brain at 30 min after radioligand injection was virtually unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. High-affinity NR2B ligands, Ro-25-6981, ifenprodil, and CO101244, showed increasing preblocking of whole-brain radioactivity retention with increasing dose (0.01-3.00 mg/kg, intravenously). Five σ1 antagonists (FTC146, BD1407, F3, F4, and NE100) and 4 σ1 agonists ((+)-pentazocine, (±)-PPCC, PRE-084, and (+)-SKF10047) were ineffective preblocking agents, except FTC146 and F4 at a high dose. Two potent σ1 receptor agonists, TC1 and SA4503, showed dose-dependent preblocking effects in the presence or absence of pharmacologic σ1 receptor blockade with FTC146. Conclusion:11C-(S)-NR2B-SMe has adequate NR2B-specific PET signal in rat brain to warrant further evaluation in higher species. TC1 and SA4503 likely have off-target binding to NR2B in vivo.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ligantes , Ratos , Estereoisomerismo
18.
Sci Rep ; 9(1): 14835, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619702

RESUMO

Positron emission tomography (PET) is an important imaging modality for biomedical research and drug development. PET requires biochemically selective radiotracers to realize full potential. Fluorine-18 (t1/2 = 109.8 min) is a major radionuclide for labeling such radiotracers but is only readily available in high activities from cyclotrons as [18F]fluoride ion. [18F]fluoroform has emerged for labeling tracers in trifluoromethyl groups. Prior methods of [18F]fluoroform synthesis used difluoro precursors in solution and led to high dilution with carrier and low molar activity (Am). We explored a new approach for the synthesis of [18F]fluoroform based on the radiosynthesis of [18F]fluoromethane from [18F]fluoride ion and then cobaltIII fluoride mediated gas phase fluorination. We estimate that carrier dilution in this process is limited to about 3-fold and find that moderate to high Am values can be achieved. We show that [18F]fluoroform so produced is highly versatile for rapidly and efficiently labeling various chemotypes that carry trifluoromethyl groups, thereby expanding prospects for developing new PET radiotracers.


Assuntos
Clorofluorcarbonetos de Metano , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Clorofluorcarbonetos de Metano/síntese química , Clorofluorcarbonetos de Metano/química , Radioisótopos de Flúor/química , Marcação por Isótopo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química
19.
Nucl Med Biol ; 70: 1-13, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30811975

RESUMO

INTRODUCTION: The serotonin 1B receptor subtype is of interest in the pathophysiology and treatment of depression, anxiety, and migraine. Over recent years 5-HT1B receptor binding in human brain has been examined with PET using radioligands that are partial but not full agonists. To explore how the intrinsic activity of a PET radioligand may affect imaging performance, two high-affinity full 5-HT1B receptor agonists (AZ11136118, 4; and AZ11895987, 5) were selected from a large compound library and radiolabeled for PET examination in non-human primates. METHODS: [11C]4 was obtained through Pd(0)-mediated insertion of [11C]carbon monoxide between prepared iodoarene and homochiral amine precursors. [11C]5 was obtained through N-11C-methylation of N-desmethyl precursor 6 with [11C]methyl triflate. [11C]4 and [11C]5 were studied with PET in rhesus or cynomolgus monkey. [11C]4 was studied with PET in mice and rats to measure brain uptake and specific binding. Ex-vivo experiments in rats were performed to identify whether there were radiometabolites in brain. Physiochemical parameters for [11C]4 (pKa, logD and conformational energetics) were evaluated. RESULTS: Both [11C]4 and [11C]5 were successfully produced in high radiochemical purity and in adequate amounts for PET experiments. After intravenous injection of [11C]4, brain radioactivity peaked at a low level (0.2 SUV). Pretreatment with tariquidar, an inhibitor of the brain P-gp efflux transporter, increased brain exposure four-fold whereas pretreatment with a high pharmacological dose of the 5-HT1B antagonist, AR-A000002, had no effect on the binding. Ex-vivo experiments in rats showed no radiometabolites entering brain. [11C]5 also failed to enter monkey brain under baseline conditions. CONCLUSIONS: [11C]4 and [11C]5 show too low brain uptake and specific binding to be useful PET radioligands. Low brain uptake is partly ascribed to efflux transporter action as well as unfavorable conformations.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Técnicas de Química Sintética , Interações Hidrofóbicas e Hidrofílicas , Processamento de Imagem Assistida por Computador , Ligantes , Macaca mulatta , Radioquímica , Ratos , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética
20.
J Cereb Blood Flow Metab ; 39(6): 1138-1147, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749279

RESUMO

Translocator protein 18 kDa (TSPO) has been widely imaged as a marker of neuroinflammation using several radioligands, including [11C]PBR28. In order to study the effects of age, sex, and obesity on TSPO binding and to determine whether this binding can be accurately assessed using fewer radio high-performance liquid chromatography (radio-HPLC) measurements of arterial blood samples, we created a database of 48 healthy subjects who had undergone [11C]PBR28 scans (23 high-affinity binders (HABs) and 25 mixed-affinity binders (MABs), 20 F/28 M, age: 40.6 ± 16.8 years). After analysis by Logan plot using 23 metabolite-corrected arterial samples, total distribution volume ( VT) was found to be 1.2-fold higher in HABs across all brain regions. Additionally, the polymorphism plot estimated nondisplaceable uptake ( VND) as 1.40 mL · cm-3, which generated a specific-to-nondisplaceable ratio ( BPND) of 1.6 ± 0.6 in HABs and 1.1 ± 0.6 in MABs. VT increased significantly with age in nearly all regions and was well estimated with radio-HPLC measurements from six arterial samples. However, VT did not correlate with body mass index and was not affected by sex. These results underscore which patient characteristics should be accounted for during [11C]PBR28 studies and suggest ways to perform such studies more easily and with fewer blood samples.


Assuntos
Encéfalo/diagnóstico por imagem , Receptores de GABA/análise , Acetamidas , Adulto , Fatores Etários , Índice de Massa Corporal , Encéfalo/metabolismo , Radioisótopos de Carbono , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Piridinas , Cintilografia/métodos , Cintilografia/normas , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...