Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(5): 1105-1114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33151127

RESUMO

The orexin peptides promote hedonic intake and other reward behaviors through different brain sites. The opioid dynorphin peptides are co-released with orexin peptides but block their effects on reward in the ventral tegmental area (VTA). We previously showed that in the paraventricular hypothalamic nucleus (PVN), dynorphin and not orexin peptides enhance hedonic intake, suggesting they have brain-site-specific effects. Obesity alters the expression of orexin and dynorphin receptors, but whether their expression across different brain sites is important to hedonic intake is unclear. We hypothesized that hedonic intake is regulated by orexin and dynorphin peptides in PVN and that hedonic intake in obesity correlates with expression of their receptors. Here we show that in mice, injection of DYN-A1-13 (an opioid dynorphin peptide) in the PVN enhanced hedonic intake, whereas in the VTA, injection of OXA (orexin-A, an orexin peptide) enhanced hedonic intake. In PVN, OXA blunted the increase in hedonic intake caused by DYN-A1-13. In PVN, injection of norBNI (opioid receptor antagonist) reduced hedonic intake but a subsequent OXA injection failed to increase hedonic intake, suggesting that OXA activity in PVN is not influenced by endogenous opioid activity. In the PVN, DYN-A1-13 increased the intake of the less-preferred food in a two-food choice task. In obese mice fed a cafeteria diet, orexin 1 receptor mRNA across brain sites involved in hedonic intake correlated with fat preference but not caloric intake. Together, these data support that orexin and dynorphin peptides regulate hedonic intake in an opposing manner with brain-site-specific effects.


Assuntos
Dinorfinas , Núcleo Hipotalâmico Paraventricular , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/metabolismo , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos , Obesidade/metabolismo , Orexinas/metabolismo
2.
Int J Obes (Lond) ; 40(2): 206-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26073655

RESUMO

In this review, we discuss the observations that, following chronic high-fat diet (HFD) exposure, male mice have higher levels of saturated fatty acids (FAs) and total sphingolipids, whereas lower amounts of polyunsaturated FAs in the central nervous system (CNS) than females. Furthermore, males, when compared with female mice, have higher levels of inflammatory markers in the hypothalamus following exposure to HFD. The increase in markers of inflammation in male mice is possibly due to the reductions in proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and estrogen receptor alpha (ERα), which is not recapitulated in female mice. Consistently, hypothalamic inflammation is induced both in male and female ERα total-body knockout mice when exposed to a HFD, thus confirming the key role of ERα in the regulation of HFD-induced hypothalamic inflammation. Finally, the HFD-induced depletion of hypothalamic ERα is associated with dysregulation in metabolic homeostasis, as evidenced by reductions in glucose tolerance and decrements in myocardial function.


Assuntos
Hipotálamo/patologia , Inflamação/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia , Ácido Palmítico/metabolismo , Fatores Sexuais , Esfingolipídeos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA