Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(2): 103675, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141499

RESUMO

Unsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells. Yeast mitotic slippage was accompanied with aberrant aspects, such as degradation of the nucleolar protein Net1, release of phosphatase Cdc14, and anaphase-promoting complex/cyclosome (APC/C)-Cdh1-dependent degradation of securin and cyclin B in metaphase. This mitotic slippage caused chromosome instability. In human cells, mammalian TORC1 (mTORC1) inactivation also invoked mitotic slippage, indicating that TORC1 inactivation-induced mitotic slippage is conserved from yeast to mammalian cells. However, the invoked mitotic slippage in human cells was not dependent on APC/C-Cdh1. This study revealed an unexpected involvement of TORC1 in mitosis and provides information on undesirable side effects of the use of TORC1 inhibitors as immunosuppressants and anti-tumor drugs.

2.
Biochem Biophys Res Commun ; 561: 158-164, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023781

RESUMO

Remodeling of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is critical for microautophagy induction in budding yeast. Nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicit recruitment of the ESCRT-0 complex (Vps27-Hse1) onto vacuolar membranes and ESCRT-mediated microautophagy induction. Mitotic protein phosphatase Cdc14 antagonizes TORC1-mediated phosphorylation in macroautophagy induction after nutrient starvation and TORC1 inactivation. Here, we report that Cdc14 downregulates microautophagy induction after TORC1 inactivation. Cdc14 dysfunction stimulated the vacuolar membrane recruitment of Hse1, but not Vps27, after TORC1 inactivation, promoting ESCRT-0 complex formation. Conversely, overexpression of CDC14 compromises Hse1 recruitment on vacuolar membranes and microautophagy induction after TORC1 inactivation. Thus, Cdc14 phosphatase regulates the fluxes of two types of autophagy in the opposite directions, namely, it elicits macroautophagy and attenuates microautophagy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membranas Intracelulares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Membranas Intracelulares/patologia , Microautofagia , Monoéster Fosfórico Hidrolases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Vacúolos/patologia
3.
Biochem Biophys Res Commun ; 552: 1-8, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740659

RESUMO

The degradation of nucleolar proteins - nucleophagy - is elicited by nutrient starvation or the inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Prior to nucleophagy, nucleolar proteins migrate to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA (rRNA gene) repeat regions are condensed and escape towards NVJ-distal sites. This suggests that the NVJ controls nucleolar dynamics from outside of the nucleus after TORC1 inactivation, but its molecular mechanism is unclear. Here, we show that sorting nexin (SNX) Mdm1, an inter-organelle tethering protein at the NVJ, mediates TORC1 inactivation-induced nucleolar dynamics. Furthermore, Mdm1 was required for proper nucleophagic degradation of nucleolar proteins after TORC1 inactivation, where it was dispensable for the induction of nucleophagic flux itself. This indicated that nucleophagy and nucleolar dynamics are independently regulated by TORC1 inactivation. Finally, Mdm1 was critical for survival during nutrient starvation conditions. Mutations of SNX14, a human Mdm1 homolog, cause neurodevelopmental disorders. This study provides a novel insight into relationship between sorting nexin-mediated microautophagy and neurodevelopmental disorders.


Assuntos
Autofagia/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Vacúolos/metabolismo , Antifúngicos/farmacologia , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Deleção de Genes , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Microscopia de Fluorescência/métodos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Fatores de Transcrição/metabolismo
4.
Biochem Biophys Res Commun ; 550: 158-165, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33706099

RESUMO

Chromosomes have their own territories and dynamically translocate in response to internal and external cues. However, whether and how territories and the relocation of chromosomes are controlled by other intracellular organelles remains unknown. Upon nutrient starvation and target of rapamycin complex 1 (TORC1) inactivation, micronucleophagy, which preferentially degrades nucleolar proteins, occurs at the nucleus-vacuole junction (NVJ) in budding yeast. Ribosomal DNA (rDNA) is condensed and relocated against the NVJ, whereas nucleolar proteins move towards the NVJ for micronucleophagic degradation, causing dissociation of nucleolar proteins from rDNA. These findings imply that the NVJ is the critical platform in the directional movements of rDNA and nucleolar proteins. Here, we show that cells lacking the NVJ (NVJΔ cells) largely lost rDNA condensation and rDNA-nucleolar protein separation after TORC1 inactivation. The macronucleophagy receptor Atg39, an outer nuclear membrane protein, accumulated at the NVJ and was degraded by micronucleophagy. These suggested that macronucleophagy is also dependent on the presence of the NVJ. However, micronucleophagy, but not macronucleophagy, was abolished in NVJΔ cells. This study clearly demonstrated that vacuoles controls intranuclear events, nucleolar dynamics, from outside of the nucleus via the NVJ under the control of TORC1.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Saccharomyces cerevisiae/citologia , Vacúolos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Núcleo Celular/genética , DNA Ribossômico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Viabilidade Microbiana , Proteínas Nucleares/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/genética
5.
Cell Signal ; 79: 109884, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33321182

RESUMO

Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicits nucleophagy degrading nucleolar proteins in budding yeast. After TORC1 inactivation, nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas ribosomal DNA (rDNA encoding rRNA) escapes from the NVJ. Condensin-mediated rDNA condensation promotes the repositioning and nucleophagic degradation of nucleolar proteins. However, the molecular mechanism of TORC1 inactivation-induced chromosome condensation is still unknown. Here, we show that Cdc14 protein phosphatase and topoisomerase II (Topo II), which are engaged in rDNA condensation in mitosis, facilitate rDNA condensation after TORC1 inactivation. rDNA condensation after rapamycin treatment was compromised in cdc14-1 and top2-4 mutants. In addition, the repositioning of rDNA and nucleolar proteins and nucleophagic degradation of nucleolar proteins were impeded in these mutants. Furthermore, Cdc14 and Topo II were required for the survival of quiescent cells in prolonged nutrient-starved conditions. This study reveals that these factors are critical for starvation responses.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , DNA Topoisomerases Tipo II/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
BMC Mol Cell Biol ; 21(1): 70, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028189

RESUMO

BACKGROUND: Microautophagy, which degrades cargos by direct lysosomal/vacuolar engulfment of cytoplasmic cargos, is promoted after nutrient starvation and the inactivation of target of rapamycin complex 1 (TORC1) protein kinase. In budding yeast, microautophagy has been commonly assessed using processing assays with green fluorescent protein (GFP)-tagged vacuolar membrane proteins, such as Vph1 and Pho8. The endosomal sorting complex required for transport (ESCRT) system is proposed to be required for microautophagy, because degradation of vacuolar membrane protein Vph1 was compromised in ESCRT-defective mutants. However, ESCRT is also critical for the vacuolar sorting of most vacuolar proteins, and hence reexamination of the involvement of ESCRT in microautophagic processes is required. RESULTS: Here, we show that the Vph1-GFP processing assay is unsuitable for estimating the involvement of ESCRT in microautophagy, because Vph1-GFP accumulated highly in the prevacuolar class E compartment in ESCRT mutants. In contrast, GFP-Pho8 and Sna4-GFP destined for vacuolar membranes via an alternative adaptor protein-3 (AP-3) pathway, were properly localized on vacuolar membranes in ESCRT-deficient cells. Nevertheless, microautophagic degradation of GFP-Pho8 and Sna4-GFP after TORC1 inactivation was hindered in ESCRT mutants, indicating that ESCRT is indeed required for microautophagy after nutrient starvation and TORC1 inactivation. CONCLUSIONS: These findings provide evidence for the direct role of ESCRT in microautophagy induction.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Microautofagia/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Fermento Seco/metabolismo , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Vacúolos/metabolismo
7.
Biochem Biophys Res Commun ; 529(3): 846-853, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32553629

RESUMO

The yeast E2F functional homologs MBF (Mbp1/Swi6) and SBF (Swi4/Swi6) complexes are critical transcription factors for G1/S transition. The target of rapamycin complex 1 (TORC1) kinase promotes G1/S transition via upregulation of the G1 cyclin Cln3 that activates MBF and SBF in favorable nutrient conditions. Here, we show evidence that TORC1 directly regulates G1/S transition via MBF and SBF. Various proteins involved in G1/S transition, including Mbp1 and Swi4, but not Swi6, were largely lost after rapamycin treatment. TORC1 inactivation facilitated degradation of Mbp1 and Swi4. Mbp1 degradation was dependent on Skp1-Cullin1-F-box (SCF)-Grr1 and proteasomes. We identified a PEST-like degron in Mbp1. Mutant cells with an unstable Mbp1 protein were hypersensitive to rapamycin and more accumulated G1 cells in the absence and presence of rapamycin. This study revealed that TORC1 directly controls MBF/SBF-mediated G1/S transition in response to nutrient availability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/metabolismo , Proliferação de Células , Fase G1 , Fase S , Saccharomyces cerevisiae/metabolismo
8.
Biochem Biophys Res Commun ; 524(3): 614-620, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32029270

RESUMO

Deformation of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is necessary for microautophagy. Target of rapamycin complex 1 (TORC1) protein kinase negatively regulates ESCRT-0 (Vps27-Hse1) recruitment onto vacuolar membranes and microautophagy induction. However, whether and how protein phosphatase regulates these events is unknown. Here, we show that the TORC1-downstream protein phosphatase PP2A-Cdc55 is important for these events after TORC1 inactivation in budding yeast. Loss of PP2A-Cdc55 compromised vacuolar localization of Hse1, but not Vps27. This study revealed that the orchestrated action of PP2A induces microautophagy upon TORC1 inactivation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membranas Intracelulares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
9.
Biochem Biophys Res Commun ; 522(1): 88-94, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31740006

RESUMO

Microautophagy is promoted after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) kinase. Invagination of vacuolar membranes by endosomal sorting complex required for transport (ESCRT) is required for microautophagy. Vps27, a subunit of ESCRT-0, is recruited onto vacuolar membranes via dephosphorylation after TORC1 inactivation. Here, we showed that Hse1, another ESCRT-0 subunit, is also recruited onto vacuolar membranes after TORC1 inactivation, promoting formation of ESCRT-0 complex on vacuolar membranes. Hse1 recruitment was dependent on Vps27, whereas Vps27 recruitment was independent of Hse1. Not only Vps27 but also Hse1 was required for ESCRT-III recruitment onto vacuolar membranes and microautophagy induction after TORC1 inactivation. This study revealed that ESCRT-0 (Vps27-Hse1) complex formation on vacuolar membranes is important for microautophagy inactivation after TORC1 inactivation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo , Transporte Biológico , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Cell Rep ; 28(13): 3423-3434.e2, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553911

RESUMO

Nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase induce nucleophagy preferentially degrading only nucleolar components in budding yeast. Nucleolar proteins are relocated to sites proximal to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA, which is embedded in the nucleolus under normal conditions, moves to NVJ-distal regions, causing rDNA dissociation from nucleolar proteins after TORC1 inactivation. This repositioning is mediated via chromosome linkage INM protein (CLIP)-cohibin complexes that tether rDNA to the inner nuclear membrane. Here, we show that TORC1 inactivation-induced rDNA condensation promotes the repositioning of rDNA and nucleolar proteins. Defects in condensin, Rpd3-Sin3 histone deacetylase (HDAC), and high-mobility group protein 1 (Hmo1), which are involved in TORC1 inactivation-induced rDNA condensation, compromised the repositioning and nucleophagic degradation of nucleolar proteins, although rDNA still escaped from nucleophagic degradation in these mutants. We propose a model in which rDNA condensation after TORC1 inactivation generates a motive force for the repositioning of rDNA and nucleolar proteins.


Assuntos
Autofagia/imunologia , DNA Ribossômico/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Nucleares/metabolismo , Humanos
11.
Biochem Biophys Res Commun ; 519(2): 302-308, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31506176

RESUMO

Nucleolar proteins such as Nop1/fibrillarin are degraded by nucleophagy in nutrient-starved conditions. However, whether and how excess nucleolar proteins are removed in normal conditions is unknown. Here we show that overexpressed nucleolar protein Nop1 is toxic and degraded in nutrient-rich conditions in budding yeast. The degradation was dependent on proteasomes. The CUE domain-containing protein Def1 mediated the degradation via the CUE domain and alleviated toxicity of Nop1 overexpression. Def1 was recruited to overexpressed Nop1 in the nucleolus. Ubiquitin mutants compromised this recruitment. This study revealed that Def1 is a novel factor for ubiquitin-dependent degradation of excess nucleolar proteins.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...