Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 139: 108877, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302678

RESUMO

The environment is crucial for fish as their mucosal surfaces face continuous challenges in the water. Fish mucosal surfaces harbor the microbiome and mucosal immunity. Changes in the environment could affect the microbiome, thus altering mucosal immunity. Homeostasis between the microbiome and mucosal immunity is crucial for the overall health of fish. To date, very few studies have investigated mucosal immunity and its interaction with the microbiome in response to environmental changes. Based on the existing studies, we can infer that environmental factors can modulate the microbiome and mucosal immunity. However, we need to retrospectively examine the existing literature to investigate the possible interaction between the microbiome and mucosal immunity under specific environmental conditions. In this review, we summarize the existing literature on the effects of environmental changes on the fish microbiome and mucosal immunity. This review mainly focuses on temperature, salinity, dissolved oxygen, pH, and photoperiod. We also point out a gap in the literature and provide directions to go further in this research field. In-depth knowledge about mucosal immunity-microbiome interaction will also improve aquaculture practices by reducing loss during environmental stressful conditions.


Assuntos
Imunidade nas Mucosas , Microbiota , Animais , Estudos Retrospectivos , Microbiota/fisiologia , Peixes , Mucosa
2.
Front Microbiol ; 14: 1097954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089546

RESUMO

As a catadromous fish, Asian sea bass (Lates calcarifer) juveniles migrate from seawater (SW) to freshwater (FW) for growth and development. During migration, they undergo physiological changes to acclimate to environmental salinity. Thus, it is crucial to understand how SW-to-FW migration affects the gut microbiota of catadromous fish. To the best of our knowledge, no study has revealed the effects of transfer to hypotonic environments on a catadromous fish microbiota. In this study, we aimed to determine the effects of FW transfer on the microbiota and cytokine gene expression in the intestines of juvenile catadromous Asian sea bass. The relationship between the water and the gut microbiota of this euryhaline species was also examined. We found that FW transfer affected both mucosa- and digesta-associated microbiota of Asian sea bass. Plesiomonas and Cetobacterium were dominant in both the mucosa- and digesta-associated microbiota of FW-acclimated sea bass. The pathogenic genera Vibrio, Staphylococcus, and Acinetobacter were dominant in the SW group. Although dominant fish microbes were present in the water, fish had their own unique microbes. Vitamin B6 metabolism was highly expressed in the FW fish microbiota, whereas arginine, proline, and lipid metabolism were highly expressed in the SW fish microbiota. Additionally, the correlation between cytokine gene expression and microbiota was found to be affected by FW transfer. Taken together, our results demonstrated that FW transfer altered the composition and functions of mucosa- and digesta-associated microbiota of catadromous Asian sea bass intestines, which correlated with cytokine gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...