Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 9(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34442192

RESUMO

Monitoring exhaled breath is a safe, noninvasive method for determining the health status of the human body. Most of the components in our exhaled breath can act as health biomarkers, and they help in providing information about various diseases. Nitric oxide (NO) is one such important biomarker in exhaled breath that indicates oxidative stress in our body. This work presents a simple and noninvasive quantitative analysis approach for detecting NO from exhaled breath. The sensing is based on the colorimetric assisted detection of NO by m-Cresol Purple, Bromophenol Blue, and Alizaringelb dye. The sensing performance of the dye was analyzed by ultraviolet-visible (UV-Vis) spectroscopy. The study covers various sampling conditions like the pH effect, temperature effect, concentration effect, and selective nature of the dye. The m-Cresol Purple dye exhibited a high sensitivity towards NO with a detection limit of ~0.082 ppm in the linear range of 0.002-0.5 ppm. Moreover, the dye apprehended a high degree of selectivity towards other biocompounds present in the breath, and no possible interfering cross-reaction from these species was observed. The dye offered a high sensitivity, selectivity, fast response, and stability, which benchmark its potential for NO sensing. Further, m-Cresol Purple dye is suitable for NO sensing from the exhaled breath and can assist in quantifying oxidative stress levels in the body for the possible detection of COVID-19.

2.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921054

RESUMO

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


Assuntos
Carvão Vegetal/química , Café , Fluoroquinolonas/química , Poluentes Químicos da Água/química , Adsorção , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...