Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(23): 7947-7959, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28574076

RESUMO

This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface. These swirled caves along the branches were completely filled with 50-100 nm poly-CN nano-sphere-fossils with orb-like appearance. Such structural features are key issues of the inherent surface reactivity of a powerful catalyst/trapper, enabling photocatalytic oxidation and trapping of extremely toxic arsenite (AsO33-) species and photo-induced recovery of arsenate (AsO43-) products from catalyst surfaces. The light-induced release of produced AsO43- from BSD indicates (i) highly controlled waste collection/management (i.e., recovery), (ii) low cost and ecofriendly photo-adsorbent, (iii) selective trapping of real sample water to produce water-free arsenite species; (iv) multiple reuse cycles of catalysts (i.e., reduced waste volume). Matrixed dendrites, covered with 3D microscopic sphere cores that capture solar-light, trap toxins, and are triggered by light, were designed. These dendrites can withstand indoor and outdoor recovery of toxins from water sources.

2.
Chem Asian J ; 12(15): 1952-1964, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28544414

RESUMO

Because of the devastating impact of arsenic on terrestrial and aquatic organisms, the recovery, removal, disposal, and management of arsenic-contaminated water is a considerable challenge and has become an urgent necessity in the field of water treatment. This study reports the controlled fabrication of a low-cost adsorbent based on microscopic C-,N-doped NiO hollow spheres with geode shells composed of poly-CN nanospherical nodules (100 nm) that were intrinsically stacked and wrapped around the hollow spheres to form a shell with a thickness of 500-700 nm. This C-,N-doped NiO hollow-sphere adsorbent (termed CNN) with multiple diffusion routes through open pores and caves with connected open macro/meso windows over the entire surface and well-dispersed hollow-sphere particles that create vesicle traps for the capture, extraction, and separation of arsenate (AsO43- ) species from aqueous solution. The CNN structures are considered to be a potentially attractive adsorbent for AsO43- species due to 1) superior removal and trapping capacity from water samples and 2) selective trapping of AsO43- from real water samples that mainly contained chloride and nitrate anions and Fe2+ , and Mn2+ , Ca2+ , and Mg2+ cations. The structural stability of the hierarchal geodes was evident after 20 cycles without any significant decrease in the recovery efficiency of AsO43- species. To achieve low-cost adsorbents and toxic-waste management, this superior CNN AsO43- dead-end trapping and recovery system evidently enabled the continuous control of AsO43- disposal in water-scarce environments, presents a low-cost and eco-friendly adsorbent for AsO43- species, and selectively produced water-free arsenate species. These CNN geode traps show potential as excellent adsorbent candidates in environment remediation tools and human healthcare.


Assuntos
Arseniatos/isolamento & purificação , Técnicas de Química Analítica/métodos , Poluentes Químicos da Água/isolamento & purificação , Água/química , Ânions/isolamento & purificação , Arseniatos/química , Técnicas de Química Analítica/economia , Limite de Detecção , Nanopartículas/química , Porosidade , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...