Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0269490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35839164

RESUMO

Marine protected areas (MPAs) are widely utilized for conservation of the world's marine resources. Yet, compliance with MPA regulations remains difficult to measure because of limits to human resources and a lack of affordable technologies to automate monitoring over time. The Marine Monitor, an autonomous vessel monitoring, recording, and reporting system leveraging commercial off-the-shelf X-band marine radar to detect and track vessels, was used to monitor five nearshore California MPAs simultaneously and continuously to identify and compare site-specific use patterns over one year. Vessel tracks were classified into two movement patterns to capture likely fishing activity, "focal" or "linear", that corresponded with local targeted species. Some illegal fishing potentially occurred at all sites (7-17% of tracks depending on site) most frequently on weekends and at mid-day, but the majority of activity occurred just outside the MPAs and in the near vicinity suggesting both a high level of compliance with regulations and awareness of MPA boundaries. Time spent engaged in potential fishing activity compared to track counts suggests that unique vessels may spend more time fishing inside area boundaries at some sites than others. The spatial distribution of activity shows distinct concentrations near MPA boundaries at all sites which strongly suggests vessels purposefully target the narrow area at the MPA boundary or "fish the line", a potential acknowledgement of successful spillover. This activity increased significantly during some local fishing seasons. Concentration of activity at MPA boundaries highlights the importance of continuous monitoring at a high spatial and temporal resolution. Reporting of vessel behavior at a fine-scale using radar can help resource managers target enforcement efforts and understand human use patterns near coastal MPAs.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Peixes , Humanos , Radar , Estações do Ano
2.
Sci Rep ; 11(1): 18391, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526540

RESUMO

Commercial shipping is the dominant source of low-frequency noise in the ocean. It has been shown that the noise radiated by an individual vessel depends upon the vessel's speed. This study quantified the reduction in source levels (SLs) and sound exposure levels (SELs) for ships participating in two variations of a vessel speed reduction (VSR) program. SLs and SELs of individual ships participating in the program between 2014 and 2017 were statistically lower than non-participating ships (p < 0.001). In the 2018 fleet-based program, there were statistical differences between the SLs and SELs of fleets that participated with varying degrees of cooperation. Significant reductions in SL and SEL relied on cooperation of 25% or more in slowing vessel speed. This analysis highlights how slowing vessel speed to 10 knots or less is an effective method in reducing underwater noise emitted from commercial ships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...