Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-344911

RESUMO

To understand the CD8+ T cell immunity related to viral protection and disease severity in COVID-19, we evaluated the complete SARS-CoV-2 genome (3141 MHC-I binding peptides) to identify immunogenic T cell epitopes, and determine the level of CD8+ T cell involvement using DNA-barcoded peptide-major histocompatibility complex (pMHC) multimers. COVID-19 patients showed strong T cell responses, with up to 25% of all CD8+ lymphocytes specific to SARS-CoV-2-derived immunodominant epitopes, derived from ORF1 (open reading frame 1), ORF3, and Nucleocapsid (N) protein. A strong signature of T cell activation was observed in COVID-19 patients, while no T cell activation was seen in the non-exposed and high exposure risk healthy donors. Interestingly, patients with severe disease displayed the largest T cell populations with a strong activation profile. These results will have important implications for understanding the T cell immunity to SARS-CoV-2 infection, and how T cell immunity might influence disease development.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-250647

RESUMO

Predictive models for vaccine design have become a powerful and necessary resource for the expeditiousness design of vaccines to combat the ongoing SARS-CoV-2 global pandemic. Here we use the power of these predicted models to assess the sequence diversity of circulating SARS-CoV-2 proteomes in the context of an individuals CD8 T-cell immune repertoire to identify potential. defined regions of immunogenicity. Using this approach of expedited and rational CD8 T-cell vaccine design, it may be possible to develop a therapeutic vaccine candidate with the potential for both global and local coverage.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-174888

RESUMO

ABSTRACTSARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. We systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in a large cohort of unexposed individuals as well as exposed family members and individuals with acute or convalescent COVID-19. Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative family members and individuals with a history of asymptomatic or mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals.Competing Interest StatementThe authors have declared no competing interest.View Full Text

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...